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ABSTRACT 

A new wave of collaborative robots designed to work 

alongside humans is bringing the automation historically 

seen in large-scale industrial settings to new, diverse 

contexts. However, the ability to program these machines 

often requires years of training, making them inaccessible or 

impractical for many. This paper rethinks what robot 

programming interfaces could be in order to make them 

accessible and intuitive for adult novice programmers. We 

created a block-based interface for programming a one-

armed industrial robot and conducted a study with 67 adult 

novices comparing it to two programming approaches in 

widespread use in industry. The results show participants 

using the block-based interface successfully implemented 

robot programs faster with no loss in accuracy while 

reporting higher scores for usability, learnability, and overall 

satisfaction. The contribution of this work is showing the 

potential for using block-based programming to make 

powerful technologies accessible to a wider audience. 

Author Keywords 

Block-based programming; Industrial robotics interfaces 

ACM Classification Keywords 

D.2.3 Coding Tools and Techniques; H.5.2 User Interfaces 

INTRODUCTION 
In recent years robots have become safer and more flexible, 

resulting in a greater presence in our world. This is especially 

true in the workplace, where robots are being used in a 

growing number of roles. While the larger narrative around 

the introduction of robots into the workplace often frames 

these technologies as replacements for workers, scholarship 

is finding that automation does not necessarily replace 

workers, but it does change the nature of the work [9].  

Collaborative robots, which are intended to work safely 

alongside humans, exemplify this trend [12,22,27]. 

Collaborative robots take advantage of “the interplay 

between machine and human comparative advantage [that] 

allows computers to substitute for workers in performing 

routine, codifiable tasks while amplifying the comparative 

advantage of workers in supplying problem-solving skills, 

adaptability, and creativity” [9]. In order to support new 

challenges that emerge from being placed in smaller factories 

and given a wider variety of tasks, these new robots must be 

safe, efficient and, support quick reprogramming.  

While the design of the machines themselves has resulted in 

more powerful and flexible robots with a greater set of 

capabilities, relatively little attention has been given to the 

accompanying programming tools to make them more 

accessible or intuitive. Programming languages used in 

industrial settings, many derived from Pascal and BASIC 

and created in the early 1990s, have historically been 

designed by engineers, for engineers. As such, writing the 

programs necessary to introduce robots into the workplace is 

time-consuming and often requires years of training, 

meaning many small and medium-sized enterprises are not 

able to benefit from robotic automation [37,38].  

Fortunately, advances in the design of programming 

environments for novices may provide some guidance on 

ways to redesign these robot programming interfaces. While 

early work in end-user programming focused on making 

computers and programming accessible to professionals [6], 

the last twenty years has produced major advances in 

designing introductory programming environments for 

younger learners [14,26]. In particular, the emergence of the 

block-based programming paradigm has introduced millions 

of young learners to the powerful concepts of computing 

through Scratch, Lego Mindstorms, and other toys [4]. This 

paper presents the results of an investigation into if and how 

block-based programming, designed for young learners, can 

be used to make the task of programming industrial robots 

accessible to adult novices. 
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This paper introduces CoBlox, a block-based programming 

interface   for   Roberta,   a   single-armed   industrial   robot 

(Figure 1) and presents results of a comparative study 

showing how the CoBlox interface outperforms two of the 

most widely used robotics programming approaches with 

respect to speed of authoring programs with no loss of 

accuracy and fostering more positive attitudes and higher 

levels of satisfaction for adult novice programmers.  

The contribution of this work is that it shows how the 

affordances of block-based programming can be used to 

make a complex task, like industrial robot programming, 

more accessible to adult novices. In doing so, we provide an 

empirical basis for the use of block-based programming as 

an effective programming interface for the growing set of 

applications and contexts where programming by non-

experts might occur. As programming becomes more 

mainstream for non-technical employees, there is a growing 

audience of designers that may benefit from this work. 

Additionally, this work shows that drawing inspiration from 

learning environments designed for young novices can 

effectively inspire tools intended for wider audiences.  

RELATED WORK 

The work presented in this paper brings together design 

innovations from research into making programming 

accessible to young learners with the large body of work 

investigating different approaches to programming robotic 

systems. In this section, we review relevant prior work from 

these two literatures, focusing specifically on end-user 

robotics programming and block-based programming, 

positioning our work at the intersection of the two. 

End-User Robotics Programming 

End-user programming is defined as “programming to 

achieve the result of a program primarily for personal, rather 

public use” [9]. In the case of robot programming, this means 

the author is writing a routine for a specific, immediate task, 

as opposed to creating a general-purpose program or a 

template script that others will later modify. This review 

focuses on end-user robotics programming languages due to 

our goal of making the power of industrial robots accessible 

to a wider audience of potential users. 

In their survey of robot programming systems, [6] break 

down end-user robot programming into two main categories: 

manual programming systems and automatic programming 

approaches.  

Manual Programming Systems 

Manual programming systems are defined as robot 

programming interfaces where the user has direct control 

over individual programming instructions. These interfaces 

can present users with a text-based interface for controlling 

robots, which has historically been the predominant 

approach for robot programming, or use graphical 

representations to give a user control over the robot.  

Almost all major industrial robots can be controlled via a 

proprietary, text-based programming language [6]. These 

languages often draw inspiration from early programming 

languages like BASIC and Pascal. Examples of these 

systems include ABB’s RAPID and KUKA’s KRL, which 

provide core functionality along with libraries that cover an 

increasing array of common robotics tasks. In response to 

this segmentation, there are efforts to create generalized 

robot programming languages [19] as well as extensions for  

Figure 1. The CoBlox programming environment. The left side of the environment contains the block-based robot programming 

interface for Roberta, shown on the right. 
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Figure 2. Two examples of graphical robot programming 

tools: (a) Lego Mindstorms and (b) MORPHA. 

general-purpose languages like C++ [23] and Python [9] to 

make the language more suitable for general robot 

programming tasks.  

A second form of manual robot programming systems adopt 

a visual programming approach and incorporate graphics and 

icons into the programming interface. These environments 

replace text-based instructions with icons, diagrams, or some 

other graphical representation that can be rendered in two 

dimensions which can then be manipulated by the user to 

define instructions for the robot to follow [35]. A number of 

graphical programming tools have been created to support 

robot programming. The most well-known of which is the 

Lego Mindstorms tool (Figure 2a), which uses visual blocks 

to represent basic robot actions which the user can organize 

to produce desired outcomes [30]. A second example of this 

approach is MORPHA (Figure 2b), which used an icon-

based approach and flowchart-like layout to let users define 

instructions for their robot [8]. MORPHA was intended to be 

used in industry but never achieved widespread adoption, in 

part due to the challenge of creating a meaningful icon for 

every possible command.  

Another graphical approach to robot programming 

represents programs as trees of hierarchical tasks [20]. With 

tree-based representations, the task of creating a robot 

routine is broken down into a series of steps, with each step 

potentially have sub-steps, resulting in a hierarchical 

organization and presentation of the program. Figure 3 

shows Universal Robots’ Polyscope interface, which 

includes a tree-based program on the left-side of the screen. 

Programming in tree-based environments is accomplished 

through menu-based navigation, where new commands are 

introduced by clicking buttons and defining inputs, as can be 

seen in Figure 3, which shows how a new waypoint can be 

added to a program. These interfaces often employ “wizards” 

to walk the user through creating common sequences. This 

approach has been well-accepted in practice. 

Automatic Programming Systems 

Automatic end-user robot programming systems give the 

user the ability to program a robot, but unlike manual 

programming systems, these environments hide the 

programming language from the users. Examples of 

automatic programming approaches include learning 

systems [1], gesture-following robots that imitate human 

actions [10], and the widely-used programming-by-

demonstration approach [7].  

Programming-by-demonstration takes the form of physically 

moving the robot into the desired position and then recording 

its state. By sequentially positioning the robot in different 

states, the operator can define a robot routine. This form of 

input is made possible through the combination of force-free 

control (meaning the robot can be moved as if it was in a 

zero-gravity environment) and a hand-held device, called a 

teach pendant [28]. All of the Big Four robotics 

manufacturers (ABB, Kuka, Fanuc, and Yasukawa), which 

account for over 60% of the world’s industrial robots, 

provide a teach pendant (examples of which are shown 

below in Figure 4). This makes the teach pendant approach 

the primary method of end-user programming in the field.  

Figure 4. Four teach pendants used for robot programming. 

Block-based Programming  

Block-based programming (visible on the left side of Figure 

1) is an increasingly popular approach in the design of 

introductory programming environments that uses a 

programming-command-as-puzzle-piece metaphor to 

present commands to the user [4,32]. Writing a program in a 

block-based environment takes the form of dragging-and-

dropping instructions into place on screen. Each individual 

command includes visual information about how and where 

it can be used, ensuring that incompatible instructions cannot 

be combined, thus preventing syntax errors in the program. 

Additionally, block-based programming environments 

include a number of features that have been identified as 

productive for novice programmers, including supporting 

Figure 3. Universal Robot’s tree-based programming tool. 



natural language commands, presenting available commands 

in logically ordered and easily browsed ways, and using a 

drag-and-drop authorship mechanism that is easier and faster 

than typing a command character-by-character with the 

keyboard [45]. A growing body of literature shows that the 

block-based approach to programming is an effective way to 

enable novices to write successful programs with little prior 

experience and can serve as an accessible introduction to 

programming [17,21,43]. The present study contributes to 

this body of research by studying adult novices in a 

professional setting instead of young learners in an 

educational context. Additionally, the fact that our tool is the 

end goal language, not a stepping stone to professional 

software development, represents a major change in the 

purpose of the language. 

Led by the popularity of block-based tools including Scratch 

[39] and Alice [13], there is a growing ecosystem of block-

based environments that support a variety of programming 

activities. Alice [13], and other block-based tools like 

AgentCubes [25], are noteworthy in that they allow the user 

to program three-dimensional simulations. While much of 

the focus of block-based tools has been on the creation of 

digital media (like stories, animations, and games), block-

based programming environments exist for modeling and 

simulation tools [5,24,46], mobile application development 

[40,47], playing video games [15,44], and manipulating 

media [33]. At the same time, there are a growing number of 

libraries and tools designed to make it easy to create new 

block-based languages or embed block-based programming 

interfaces into existing applications [3,18]. Finally, the 

block-based programming approach has been used in 

robotics kits for kids, which we discuss below.  

Educational and Entertainment Robots 

The final section in our review of prior work looks at 

educational robots and toys, where the intersection of block-

based programming and robotics has already begun. Lego 

Mindstorms [30] provides a LabView-based system to 

program Lego-based creations using sensors and motors 

(Figure 2a). While the interface uses an icon-based language, 

rather than text-based commands, it has proven to be 

powerful for beginners and more advanced users. There are 

also block-based interfaces for Mindstorms kits (and other 

similar robots), such as Open Roberta [50]. Beyond 

Mindstorms, there are also a growing number of robotics 

toys designed not as construction kits, but as robots to teach 

programming using a block-based interface. Examples of 

these tools include Dash and Dot [48], the Finch Robot [29], 

mBots [31] , Edison [34] and Ozobots[36]. While these 

educational robots share the larger goal of making robot 

programming easier for novices, they lack the capabilities, 

power, and the ability to support the types of complex 

instructions required for a collaborative robot in industry. 

COBLOX DESIGN 

This paper investigates ways to make robot programming 

more accessible, especially to adults with little or no 

programming experience. Our approach leverages block-

based programming, a technique that has seen widespread 

success in educational contexts, and applies it to the 

challenge of robot programming by creating a custom robot 

language, a novice-focused editor, and a robot simulation 

interface. The essential design elements being investigated in 

this work include the use of the block-based interface 

integrated into a virtual robotics environment and the custom 

designed, domain specific language that accompanies it. 

Here, we provide an overview of the CoBlox design to 

contextualize the comparative study. The design is presented 

in greater detail in [42]. 

The CoBlox environment (shown in Figure 1) is comprised 

of a custom-designed block-based programming interface 

built with the Blockly library [18] and an embedded virtual 

robot simulator, which we discuss in the following 

walkthrough. Users write programs in CoBlox by dragging-

and-dropping pre-defined robot commands and snapping 

them together to define sequences of instructions for the 

robot to follow. Users can define movement commands by 

adding the move block to their program. The text on the 

move block reads: Move quickly to <somewhere>. 

The quickly statement is a dropdown that specifies the 

speed of the movement (the other choices are slowly and 

moderately). The <somewhere> portion of the move 

command specifies the Location the robot will move to 

and includes a list of all previously defined Locations 

along with an option to define a new Location. A 

Location is a programming construct we developed that is 

used to define a robot’s position, which includes its x, y, and 

z coordinates and the orientation of the tool attached to the 

end of the robot arm, in this case, a gripper. To define a new 

position for the robot, the user selects the Add Location 

option in the <somewhere> dropdown. When this happens, 

the user is prompted to use the virtual robot interface to click-

and-drag the robot arm into place. Once the robot is in 

position, the user clicks a check box at the top of the screen, 

and gives a name to the Location (e.g. 

RedBlockOrigin, as seen in the Pick and Place recipe 

in Figure 1). Once the Location is defined, the 

<somewhere> text in the dropdown is replaced with the 

newly entered name. This process is similar to the 

programming-by-demonstration approach commonly used 

in robotics programming [7], just replacing the physical 

robot with a virtual one and introducing the programming 

construct of a Location that can be reused throughout the 

block-based program. With this feature, we highlight the 

drag-and-drop programming mechanisms of block-based 

programming, the ability to blend input features within a 

programming command (adding dropdowns and buttons 

inside a programming command), and the dynamic interface 

(for shifting between the programming and robot interfaces), 

as ways to make the task of programming more accessible.  

Another innovation of the CoBlox interface that uses the 

affordances of the block-based modality is the introduction 

of Robot Recipes. Robot Recipes are predefined functions 



that serve as templates for commonly carried out actions. In 

the study presented below, the environment includes a single 

Robot Recipe called Pick and Place. The Pick and 

Place recipe defines the sequence of steps a robot follows 

to pick up an object in one location and place it somewhere 

else, a very common task for industrial robots. Robot 

Recipes are comprised of blocks available to the user, with 

suggested default arguments provided to help make the 

template easier to follow. For example, in the Pick and 

Place recipe, the first Move command reads Move 

quickly to <approach to pick>, which is meant 

to let the user know that the first Location to be defined is 

where to put the robot arm ahead of its approach to the 

pickup position. The goal of Robot Recipes is to further 

scaffold adult novice users by providing easy-to-follow 

templates to carry out common robot programming tasks. 

Additional features of CoBlox, including results from a 

small-scale user study, can be found in [42]. 

EXPERIMENTAL DESIGN 

To evaluate our block-based technique for industrial robot 

programming we conducted a user study comparing CoBlox 

to two widely-used professional tools. This section presents 

the study design, including the procedure followed, data 

collected, and analytic techniques used. 

The robot programming environments 

The independent variable in this user study is the 

programming environment in which the participant was 

asked to work. We compared our programming environment 

against two of the mostly widely-used industrial robot 

programming approaches. This ensures a benchmark against 

the leading approaches, enabling prospective adopters to 

assess its practical impact. We reviewed both research 

literature and products currently on the market to select the 

environments for comparison.  

After our review of robot programming environments, we 

chose two comparison environments: ABB’s Flex Pendant 

and Universal Robot’s Polyscope. For all three environments 

we had participants use an “offline” robot programming 

model [49] which includes a robot simulation where the 

virtual version of the robot can be manipulated as part of the 

programming interface. For Polyscope, we added the virtual 

robot by using RoboDK, a third-party simulator 

recommended by Universal Robots. The offline approach 

offers a number of advantages over the alternative which 

requires a physical robot to be available, including cost, ease 

of development and modification of programs, and 

development can be accomplished while the robot is in use 

[37]. At any point during program development, the user can 

click the “Play” button and watch a simulation of the robot 

carrying out the programmed instructions. Tutorial videos 

showing how to program a robot in all three environments 

are available in the online supplemental materials. 

ABB’s Flex Pendant 

Because nearly all of the hundreds of thousands of deployed 

industrial robots are attached to a teach pendant (like those 

shown in Figure 4), we selected this type of approach as one 

of the comparative programming environments. After 

verifying that ABB’s Flex Pendant (Figure 5) was 

comparable to other widely-used teach pendants in terms of 

quality, capabilities, and use in industry, we chose it as an  

exemplary teach pendant programming environment for this  

study. The Flex Pendant allows users to open or create 

programs, edit them line by line, and input positions by 

moving the robot via the attached joystick. As shown in 

Figure 5, the programs authored in the Flex Pendant are 

represented as text-based programs in the RAPID 

programming language. Adding commands to a program via 

the Flex Pendant takes the form of navigating menus and 

selecting commands and parameters from lists. A tutorial 

video showing this process is included in the online 

supplemental materials for this paper. Note that a virtual 

version of the pendant was used for the study, the reasons for 

which are discussed as part of the study procedure below.  

Universal Robots’ Polyscope 

The second robot programming environment chosen for this 

study is Universal Robot’s Polyscope tool, shown in Figure 

3. This tool was chosen because it represents the most 

successful—in terms of robots sold—approach to end-user 

robot programming. Additionally, it uses a tree-based, dialog 

driven strategy, thus providing another end-user 

programming paradigm to compare to CoBlox. Authoring a 

program in Polyscope takes the form of navigating through 

screens and menus, defining the specifics of each step by 

inputting values into text fields and clicking buttons 

associated with the desired behavior. This menu-based 

programming approach is distinct from conventional 

programming in that the resulting program is not represented 

in text, but instead as a series of nodes in a hierarchical tree. 

Participants 

The goal of this study is to create a robot programming 

interface that is accessible and usable by adults with little or 

no prior robotics programming experience. As such, we 

sought to recruit a diverse set of professionals to match this 

profile. Participants were recruited from an office of a 

multinational engineering conglomerate located in the 

eastern United States. Only employees outside of the 

Figure 5. The virtual version of ABB’s Flex Pendant 

programming interface. 



company’s Robotics Division for whom computer 

programming is not one of their core competencies and who 

do not do it in their jobs were invited to participate. This 

population matches our target users in that they do not 

program computers or work directly with industrial robots as 

part of their daily job requirements. The study was approved 

by the institutional review board at the primary research 

center with permission of the industry partner. 

We recruited participants by inviting them via inter-office 

email or face-to-face contact, offering a complimentary 

lunch as an incentive. Approximately 80% of contacted 

employees accepted our appointment request, leading to 110 

participants. To assign potential participants to environments 

in a uniform manner, we first divided them into three groups: 

research interns (17), researchers (44), and non-researchers 

(49). Participants from each group were then sorted 

alphabetically and assigned to the treatments round robin. 

Of the 110 scheduled users, 89 participated, and 67 were 

included in the final results. Seventeen participants were 

disqualified for procedural violations (e.g., an emergency 

meeting pulling the participant away from the task) and 

another 5 participants were removed because they had taken 

more than five programming courses in their lifetime. Of the 

67 participants, 59 were male and 8 were female. The 

average age of the participants was 35.3 years (SD 9.1), they 

had an average professional experience of 9.7 years (SD 8.4) 

and had taken an average of 1.5 programming courses (SD 

1.4) with over half of the participants (37 out of 67) having 

one or fewer programming courses in their lives. Participants 

were from a variety of work areas, including development, 

sales, testing and quality assurance, and various forms of 

engineering.  

User Study Procedure 

For each participant in the study, we followed the same 

procedure, shown below in Figure 6. During setup, we 

connected their work machine to our remote virtual machine 

that had the robotics software pre-loaded and gave them a 

reference sheet for their programming environment. The 

procedure was conducted at participants’ desks to minimize 

the disruption participation would cause to their workday. 

Each participant was then asked to (i) fill out a brief 

demographic survey, (ii) watch an approximately 10 min 

training video, and (iii) complete as many of the specified 

sub-tasks as possible during the allotted time of 60 minutes. 

While it would have been preferable to have no time limit, 

conducting studies with busy employees necessitated the 

chosen approach, and we felt that access to this 

representative population was worth this shortcoming. The 

session ended with a post survey, which asked participants 

about their experiences working on the programming 

activity. The researcher left during the programming portion 

of the procedure because we wanted participants to rely on 

the training materials as much as possible. The participant 

was provided an instant messaging account to contact the 

researcher if they had questions. The researcher reappeared 

at the participant’s desk after the allotted time to ensure the 

user had encountered no major problems.  

Training 

Prior to attempting the assigned task users were trained on 

their programming environment. To provide the most 

realistic training, we mimicked both ABB and Universal 

Robots’ practice of providing training videos. We created an 

approximately ten-minute video for each environment. Each 

video discussed the basic layout of the tool, how to navigate 

the 3D simulation environment, how to add common 

commands, how to use task templates, how to run programs, 

and how to jog the robot. Each video’s content covered the 

same materials, with the details varying according to each 

environment. In addition to the video-based training, we also 

included a single, two-sided 8.5 by 11-inch reference sheet 

that users could refer to throughout the task, which contained 

screenshots and explanations of the commands used during 

the video. All of these materials are available in the online 

supplemental materials that accompany this paper. 

Tasks 

Participants were asked to complete a series of tasks inspired 

by real-world robotics tasks—specifically pick and place—

and designed to be challenging to finish in an hour. The four 

tasks were designed to be cumulative and of increasing 

difficulty. Each task was logged and evaluated separately. 

The first task was to open and close the robot gripper, and to 

move the robot arm approximately one inch to the right and 

then to the left. This was intended to serve as an initial, 

orienting task to get users familiar with the robot and its 

movements. The second task was a basic pick and place 

routine with no outside constraints, asking the users to move 

the red block shown in Figure 1 from its starting point to 

point A. Task 3 was a pick and place routine, but with a small 

wall to be avoided in between the beginning and ending 

locations (moving the block from point A to point B in Figure 

1). The fourth and final task was a pick and place with 

reorientation, picking up the block from point B and placing 

it on its side at point C. These four tasks represent realistic 

programming activities for an industrial robot, as positioning 

the robot arm and moving and reorienting objects are core to 

the functioning and use of these types of robots. The exact 

wording of the task instructions can be found in the 

supplemental materials. 

Pilot Study 

To ensure that all unforeseen issues were fixed prior to data 

collection, we piloted our study with 12 participants. As a 
Figure 6. The timeline for the study procedure. 



result, we identified two task descriptions that users found 

confusing, which we addressed by revising the text; a bug 

related to the robotic gripper that caused some programs to 

hang, which we patched; and a missing reset feature in the 

Universal Robots environment, which we added. These 

improvements led to a much lower procedural failure rate 

during the main data collection period. 

Data Collection and Analysis 

Survey and Interviews  

Survey responses were collected from all 67 participants. To 

analyze the textual data of the survey responses, we used a 

Grounded Theory approach to determine higher level themes 

[41]. To establish a common set of codes and themes, two 

researchers applied open axial coding to the same subset of 

survey responses and then established a common 

understanding and defined a structure for the most 

commonly mentioned concepts. To validate the analysis of 

the survey results, two additional researchers extracted their 

main findings from a subset of the responses independently. 

Self-Reported Progress  

We collected progress logs from every participant during 

their session, which included the completion state and time-

on-task for each task. This data allows us to compare user 

progress in terms of time and completion rate.  

Programs Authored  

For each participant, we collected the program they authored 

as well as a video of each participant’s program running. We 

used these videos to verify that self-reported progress logs 

were accurate and to evaluate the correctness of the program 

with respect to the stated objective of each task. For each of 

the four tasks, a 10-point grading rubric was created to 

evaluate the correctness of the program. To ensure a 

consistent quality grade, two researchers scored each video 

individually, and all disagreements in scores were resolved 

through discussion. The grading rubric can be found in the 

online supplemental materials. 

RESULTS 

The findings section is broken up into two sections. First, we 

report on an analysis of the programming portion of the 

study, reporting differences in completeness, correctness, 

time on task, and findings from a qualitative analysis into 

types of errors made by each condition. The second portion 

of this section presents results from an analysis of the post 

survey, looking at differences in reported usefulness, ease-

of-use, and satisfaction, as well as report on patterns in 

responses to open-ended prompts of users’ experiences 

during the programming task. 

Results from the Programming task 

Data collected during each participant’s session included 

time-on-task for each of the four tasks and videos of their 

final programs, which were evaluated for correctness. This 

section presents the result of these analyses. 

 

Progress and Time on Task 

The programming activity was broken down into four 

cumulative tasks, with each task building off the 

functionality authored in the previous task and increasing in 

complexity. As participants progressed through the 

programming activity, they logged when they completed 

each task. We use these self-reported logs to track how many 

tasks participants completed, and the time required to 

complete each task. The number of participants who 

attempted each task is shown above the lightly shaded 

portion of each column in Figure 7. The solid portion of each 

column reflects the number of participants who scored 6 or 

higher on each task. The average time on task of those who 

attempted the task is shown in Table 1. 

 Time on Task (in seconds) 

Condition Task 1 Task 2 Task 3 Task 4 

CoBlox 438.36 843.64 481.43 621.29 

Flex Pendant 1679.08 1003.32 506.93 605.00 

Polyscope 940.73 1398.59 801.76 653.09 

Table 1. Time-on-task in seconds for each condition, including 

only participants that attempted each task.  

All 67 participants attempted the first programming task with 

many completing it. Comparing the average time-on-task 

across the three conditions for the first task, we see a 

significant difference (F(2, 65) = 15.97, p < .001). A Tukey 

Post Hoc HSD shows there to be significant differences 

between all three conditions (CoBlox and Flex Pendant p < 

.001; CoBlox and Polyscope p < .05; Flex Pendant and 

Polyscope p < .01), with CoBlox users completing the first 

task the fastest and Flex Pendant users taking the longest. 

The second task, attempted by almost all participants, again 

shows a significant difference between the conditions (F(2, 

61) = 3.50, p < .05), with the Polyscope participants 

significantly slower than the CoBlox participants (p < .05).  

Task 3 represents a turning point. Tasks were cumulative, so 

participants who did not complete one task did not attempt 

any later tasks. All but one CoBlox participant attempted 

Tasks 3 and 4, but only 12 of the 23 Flex Pendant participants 

Figure 7. Number of participants that attempted and 

completed each task, grouped by condition. 



and 11 of the 22 Polyscope participants attempted Task 4. 

This steep drop-off in participation corresponds with a 

shifting trend in time to completion. As the number of 

participants attempting tasks in Polyscope and Flex Pendant 

dwindles, the time on task of those who did attempt the latter 

tasks becomes comparable to CoBlox. This is true for both 

Tasks 3 and 4. However, there is a significant difference 

between the number of people who successfully complete 

Tasks 3 and 4 in the CoBlox condition compared to the 

others, as shown in Figure 7.  In summary, users complete 

more tasks, more quickly, using CoBlox. 

Correctness 

As Figure 7 shows, the number of participants who 

successfully completed a task is not identical to the number 

of participants who attempted the next task. Therefore, we 

separately discuss the correctness of programs. When only 

including participants who attempted each task, there was no 

statistically-significant difference by condition in scores on 

Tasks 1, 2, or 4. On Task 3, there is a significant difference 

between the three conditions (F(2, 50) = 3.23, p < .05). A 

Tukey HSD Post Hoc calculation shows the CoBlox 

condition to be significantly different than the Flex Pendant 

condition (p < .05). In summary, users achieve the same 

level of quality when using CoBlox, even though they 

complete more tasks more quickly. 

Patterns in Errors 

An analysis of participants’ final projects reveals two major 

types of errors across the three conditions: missing code 

snippets and incorrect location specification.  

Missing pieces of code errors were identified in programs for 

18 (81.8%) of the 22 CoBlox users, 14 (60.9%) of the 23 Flex 

users, and 16 (72.7%) of the 22 Polyscope users. The two 

most common errors resulting from missing code were 

failing to avoid obstacles (i.e. the wall or the floor) and 

skipping steps defined in the programming tasks. In CoBlox, 

10 (55.6%) of the 18 programs with missing code resulted in 

collisions with the floor due to not lifting up the arm 

vertically before moving it horizontally. In Flex Pendant, 7 

(50%) of the 14 programs with missing code resulted in their 

robot arm skipping steps specified in each of the 

programming tasks. In Polyscope, 11 (68.8%) and 12 (75%) 

of the 16 programs with missing code resulted in the robot 

arm colliding with the wall and the floor, respectively. 13 

(81.3%) of the 16 programs resulted in the robot arm 

skipping steps specified in the tasks. 

Incorrect location specification, meaning the participant 

moved the arm to the wrong for the task (e.g. moving the arm 

through the floor), accounted for errors in 12 (54.5%) of the 

22 CoBlox users, 10 (43.5%) of the 23 Flex users, and 16 

(72.7%) of the 23 Polyscope users. The mechanism for 

location specification was outside the scope of the CoBlox 

design. In summary, CoBlox users made the same types of 

mistakes as users of the other two environments. 

We also want to highlight two errors unique to Flex 

participants: failure to compile (1 of 23 participants) and 

incorrect parameters (1 of 23 participants). To control the 

gripper, Flex Pendant requires multiple properly ordered, 

consecutive instructions in order to compile. Both CoBlox 

and Polyscope provide this functionality through a single 

dropdown command. Further, in the Flex Pendant interface 

participants had to select parameters from a number of 

different menus and interfaces, making it more likely to 

select incorrect parameters. While these errors were 

infrequent, we mention them to highlight the fact that such 

mistakes are not possible in the Polyscope or CoBlox due to 

the composition constraints designed into the system.  

Results from the Post Survey 

In this section, we present an analysis of participants’ 

experiences using the different tools by analyzing responses 

given on the survey at the conclusion of the study protocol. 

The survey largely consisted of 5-point Likert scale 

questions. In this analysis, we group similar questions 

together to create composite measures for perceived ease-of-

use, learnability, and satisfaction. The results of this analysis, 

grouped by condition, are shown in Figure 8. The survey also 

included free response questions, which are also included in 

the analysis. The survey, including how the questions were 

grouped, can be found in the online supplemental materials. 

Ease-of-Use 

Our measure for ease-of-use for each of the tools was 

calculated by combining responses to prompts asking about 

how easy the tool was to use overall, how easy it was to do 

specific things (like add commands or fix errors), and how 

user-friendly the interface was. For this section, we 

combined 7 prompts related to ease-of-use that were found 

to correlate at an acceptable level across all conditions 

(Cronbach’s α = .86). Comparing the aggregate ease-of-use 

Figure 8. Composite scores for three attitudinal dimensions for the three conditions based on responses to the post survey. The 

differences between the three conditions are statistically significant for all three categories. 



scores between the three conditions, we find the scores to be 

significantly different from each other F(2, 65) = 3.45, p < 

.05. A Tukey post hoc HSD calculation shows the difference 

to be between CoBlox and Polyscope (p < .05).  

These results show users found the CoBlox interface to be 

easier to use than the other two interfaces, a finding that is 

further supported by the responses given to the short answer 

questions from the post survey. When asked what they liked 

about the programming environment they used, 76% of 

CoBlox users give a response that identified its ease of use, 

saying things like “Very easy to use. I made it a point not to 

use the reference sheet” and “User friendly interface and 

environment”. Half of the Polyscope participants and 20% of 

the Flex Pendant users attended to the ease-of-use of the 

interface as something they liked about the environment. 

A third data point that further illustrates this difference in 

ease of use is the number of participants in each condition 

who needed to ask a researcher for assistance during the 

study. Seven of the 22 CoBlox participants asked for help 

during the study, compared to 12 of the 23 Flex Pendant 

participants, and 14 of the 22 Polyscope participants. Again, 

this data reinforces that the CoBlox interface is the easiest to 

use of the three. In summary, users perceived CoBlox as 

easier to use than the other environments. 

Learnability 

The composite learnability score was calculated by 

combining responses to seven survey prompts related to how 

easy the environment was to learn. Examples of these 

prompts include: “Overall, it was easy to learn to use”, “I 

learned to use the whole environment quickly”, and “I could 

use this environment without the reference sheet”. The seven 

questions in this section correlate with each other at a level 

beyond the .80 level conventionally used (Cronbach’s α = 

.86). Running an analysis of variance calculation shows the 

composite learnability scores to be significantly different 

from each other across the three conditions F(2, 65) = 4.93, 

p = .01. A Tukey post hoc HSD calculation shows the 

differences to be significant between CoBlox and Polyscope 

(p < .05) and CoBlox and Flex Pendant (p = .01), with no 

difference being found between Flex Pendant and Polyscope. 

On the free response portion of the survey, a small number 

of participants gave feedback related to how easy or difficult 

it was to learn the environment. For example, one CoBlox 

participant wrote: “It was easy to learn and saw the output 

change immediately from my code. That makes change easy 

to understand.” This type of response is different from the 

way participants in the Flex Pendant condition spoke about 

how easy it was to learn to program in that interface, giving 

responses such as: “The program is not intuitive. It will 

require more than a tutorial to learn, and must have 

training.” In summary, users perceived CoBlox as easier to 

learn than the other environments. 

Satisfaction  

For the composite satisfaction measure, four prompts were 

combined, including “I am satisfied with this programming 

environment” and “I would recommend this tool to someone 

new to robot programming”. These questions all correlated 

with each other (Cronbach’s α = .86), suggesting they are 

measuring the same underlying perception of the interface 

used. There was a significant difference in user satisfaction 

across the three conditions F(2, 65) = 5.27, p < .01. A post 

hoc comparison using a Tukey HSD shows there to be a 

significant difference between CoBlox and Flex Pendant (p 

= .01) and CoBlox and Polyscope (p < .05), with CoBlox 

receiving higher satisfaction scores. In summary, users were 

more satisfied with CoBlox than the other environments. 

Criteria CoBlox 
Flex 

Pendant 
Polyscope 

Faster Task Completion    

More Correct    

Easier to Use    

Easier to Learn    

Higher Satisfaction    

Table 2. Summary of the comparative findings 

DISCUSSION 

Improving the design of Robot Programming Interfaces 

The first contribution of this work is showing how the block-

based CoBlox design performed relative to two of the most 

widely-used industrial robot programming approaches. Our 

results, summarized in Table 2, show adult novices using 

CoBlox were able to successfully complete more 

programming tasks more quickly than those using 

conventional interfaces, without sacrificing accuracy. 

Further, CoBlox had significantly higher scores for ease-of-

use, ease-of-learning, and levels of satisfaction relative to the 

other environments. Collectively, these findings show 

CoBlox, and the block-based approach to robotics 

programming more broadly has great potential for making 

industrial robotics programming more accessible to adults 

with little to no formal programming training.  

Challenges not solved through CoBlox 

CoBlox was very successful at increasing the speed and ease 

with which users entered instructions. However, we learn as 

much from what was not solved as what was.  

First, logical errors, in which users missed steps (such as not 

lifting the robot arm before moving it horizontally), were 

prevalent in all three conditions. While being able to see 

readable instructions in an intuitive format could have helped 

users see when there were missing steps, it didn’t. Therefore, 

more research is needed to provide strategies for helping 

users with such common mistakes, specifically thinking 

about how the robotics programming context can perpetuate 

these errors while also potentially provide design 

opportunities to help users not make these mistakes.  



Second, the prevalence of incorrect location specification as 

a cause of error suggests that participants also had difficulty 

with the interface provided to manipulate the robot arm. This 

finding suggests that more effort must go into interface 

design. When asked about frustrations related to the 

programming interface, many participants (37 out of the 67) 

mentioned some aspects of manipulating the virtual robot. 

For example, one participant stated: “the positional system is 

bad, you could miss the point unless you put in exactly the 

location. There should be more convenient 3D positioning 

system.” This finding replicates what we found in our small-

scale pilot study [42]. This leads to potential directions for 

future work. One of the emerging findings that will be 

shaping our next iteration of this work is thinking more 

carefully about how to better integrate the robot positions as 

part of the programming task, and redesign the virtual robot 

space in hopes of making it more intuitive and accessible. 

Bringing Innovations for Kids to Adult Environments 

One of the major contributions of this work is showing the 

potential for taking design innovations targeted at one group 

of novices (in this case, young learners) and employing them 

for another group of novices (adults). One hypothesis we 

brought to this work was that the block-based approach to 

programming that has been successful for young learners 

could help adult novices. The ease of assembling programs 

with the drag-and-drop interface, the removal of syntax 

errors, the ability to define domain-specific semantics, and 

the affordances of the graphical presentation all contributed 

to making robot programming easier for adult novices.  

In fact, an argument against the use of block-based languages 

in professional settings is the perception that block-based 

tools are “not real programming” and less powerful than 

conventional text-based tools [45]. However, growing 

applications of block-based programming, such as 

distributed computing [11], parallel computing [16], and data 

sciences [2], show this to not be the case. Further, block-

based programming may be particularly well suited to the 

context of collaborative robots, which represents an in-

between use of programming – someone who perhaps will 

never become an expert programmer but needs to program 

occasionally, maybe no more than one small program each 

day (to be run by the robot for the next day). 

Adult Novices and Collaborative Robots 

One of the goals of this work is to create a robot 

programming interface that is powerful enough to be of use 

in professional and industrial settings, while also being 

intuitive enough for adult novices. Creating such an interface 

is important giving the shifting nature of manufacturing and 

industrial jobs in the 21st century. Increasingly, positions that 

were once labeled “manual labor” are changing. 

Collaborative robots are one emerging form of the new 21st-

century blue collar position that tasks workers with working 

alongside, and interacting with, robots. Accessible 

programming interfaces are essential for helping workers 

make this transition to working alongside autonomous 

machines. Further, given the focus on speed and accuracy, 

CoBlox may have a home in the workplace of tomorrow. 

Limitations  

While we tried to make the conditions as similar as possible 

there were some differences that introduce limitations to the 

study. For example, the CoBlox and Flex Pendant conditions 

used the same virtual robot interface, but, due to technical 

reasons, the Polyscope condition used a different virtual 

robot interface, thus introducing a difference that may 

influence our findings. While there was some evidence that 

these differences may have contributed to differing 

experiences for users as seen in a small number of comments, 

it does not seem substantial enough to explain the significant 

differences between conditions reported in this work given 

that the there was no difference in capabilities between the 

interfaces. 

A second limitation relates to the diversity of the tasks that 

participants were asked to do and how it speaks to the larger 

universe of activities that robots can perform. The robots 

used in this study all had open/close grippers equipped, and 

the participants were asked to program a “pick and place” 

routine. This is a relatively narrow set of functionality that is 

serving as representative for all industrial robotics. While we 

intend on introducing additional Robot Recipes and 

broadening the scope of activities the language has been 

designed for, there is still work to be done to verify that the 

positive outcomes from this work remain when tasks become 

larger, more complicated, and more diverse. 

A final limitation relates to our recruitment of participants, 

all of which came from the same company. This results in a 

lack of geographic diversity and a shared background that 

could potential affect our results. We view this as a relatively 

minor, but noteworthy, concern and something we seek to 

address in future iterations of this work. 

CONCLUSION 

The goal of this work was to explore ways of making 

industrial robot programming more accessible to people with 

little or no prior programming experience. Drawing on 

successful design strategies used to introduce young learners 

to the practice of programming, we created CoBlox and 

showed how it outperforms the most wide-spread robotics 

programming approaches used today. The analysis shows the 

CoBlox helped adult novices program more tasks 

successfully by decreasing time on task while maintaining 

quality. In addition, the participants found it easier to use and 

enjoyed it more. Collectively, with this work, we advance 

our understanding of ways to make robot programming more 

accessible to a wider range of users. We view robotics as 

merely a single example of a field in which a block-based 

interface can be used. This study shows the block-based 

approach making a robotics programming task easier for 

novice adults, providing an empirical basis for future work 

concerned with making programming accessible to all.  In 

doing so, we contribute to the larger goal of giving people 

access to and control over the technologies around us.  
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