
Evaluating CoBlox: A Comparative Study of Robotics
Programming Environments for Adult Novices

David Weintrop1, Afsoon Afzal2, Jean Salac3, Patrick Francis4, Boyang Li4,

David C. Shepherd4, Diana Franklin3

1University of Maryland, College Park, Maryland, United States

2Carnegie Mellon University, Pittsburgh, Pennsylvania, United States

3University of Chicago, Chicago, Illinois, United States
4ABB Corporate Research, Raleigh, North Carolina, United States

weintrop@umd.edu, afsoona@cs.cmu.edu, {salac, dmfranklin}@uchicago.edu,

{patrick.francis, boyang.li, david.shepherd}@us.abb.com

ABSTRACT

A new wave of collaborative robots designed to work

alongside humans is bringing the automation historically

seen in large-scale industrial settings to new, diverse

contexts. However, the ability to program these machines

often requires years of training, making them inaccessible or

impractical for many. This paper rethinks what robot

programming interfaces could be in order to make them

accessible and intuitive for adult novice programmers. We

created a block-based interface for programming a one-

armed industrial robot and conducted a study with 67 adult

novices comparing it to two programming approaches in

widespread use in industry. The results show participants

using the block-based interface successfully implemented

robot programs faster with no loss in accuracy while

reporting higher scores for usability, learnability, and overall

satisfaction. The contribution of this work is showing the

potential for using block-based programming to make

powerful technologies accessible to a wider audience.

Author Keywords

Block-based programming; Industrial robotics interfaces

ACM Classification Keywords

D.2.3 Coding Tools and Techniques; H.5.2 User Interfaces

INTRODUCTION
In recent years robots have become safer and more flexible,

resulting in a greater presence in our world. This is especially

true in the workplace, where robots are being used in a

growing number of roles. While the larger narrative around

the introduction of robots into the workplace often frames

these technologies as replacements for workers, scholarship

is finding that automation does not necessarily replace

workers, but it does change the nature of the work [9].

Collaborative robots, which are intended to work safely

alongside humans, exemplify this trend [12,22,27].

Collaborative robots take advantage of “the interplay

between machine and human comparative advantage [that]

allows computers to substitute for workers in performing

routine, codifiable tasks while amplifying the comparative

advantage of workers in supplying problem-solving skills,

adaptability, and creativity” [9]. In order to support new

challenges that emerge from being placed in smaller factories

and given a wider variety of tasks, these new robots must be

safe, efficient and, support quick reprogramming.

While the design of the machines themselves has resulted in

more powerful and flexible robots with a greater set of

capabilities, relatively little attention has been given to the

accompanying programming tools to make them more

accessible or intuitive. Programming languages used in

industrial settings, many derived from Pascal and BASIC

and created in the early 1990s, have historically been

designed by engineers, for engineers. As such, writing the

programs necessary to introduce robots into the workplace is

time-consuming and often requires years of training,

meaning many small and medium-sized enterprises are not

able to benefit from robotic automation [37,38].

Fortunately, advances in the design of programming

environments for novices may provide some guidance on

ways to redesign these robot programming interfaces. While

early work in end-user programming focused on making

computers and programming accessible to professionals [6],

the last twenty years has produced major advances in

designing introductory programming environments for

younger learners [14,26]. In particular, the emergence of the

block-based programming paradigm has introduced millions

of young learners to the powerful concepts of computing

through Scratch, Lego Mindstorms, and other toys [4]. This

paper presents the results of an investigation into if and how

block-based programming, designed for young learners, can

be used to make the task of programming industrial robots

accessible to adult novices.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

CHI 2018, April 21–26, 2018, Montreal, QC, Canada

© 2018 Copyright is held by the owner/author(s). Publication rights

licensed to ACM.

ACM 978-1-4503-5620-6/18/04…$15.00

https://doi.org/10.1145/3173574.3173940

This paper introduces CoBlox, a block-based programming

interface for Roberta, a single-armed industrial robot

(Figure 1) and presents results of a comparative study

showing how the CoBlox interface outperforms two of the

most widely used robotics programming approaches with

respect to speed of authoring programs with no loss of

accuracy and fostering more positive attitudes and higher

levels of satisfaction for adult novice programmers.

The contribution of this work is that it shows how the

affordances of block-based programming can be used to

make a complex task, like industrial robot programming,

more accessible to adult novices. In doing so, we provide an

empirical basis for the use of block-based programming as

an effective programming interface for the growing set of

applications and contexts where programming by non-

experts might occur. As programming becomes more

mainstream for non-technical employees, there is a growing

audience of designers that may benefit from this work.

Additionally, this work shows that drawing inspiration from

learning environments designed for young novices can

effectively inspire tools intended for wider audiences.

RELATED WORK

The work presented in this paper brings together design

innovations from research into making programming

accessible to young learners with the large body of work

investigating different approaches to programming robotic

systems. In this section, we review relevant prior work from

these two literatures, focusing specifically on end-user

robotics programming and block-based programming,

positioning our work at the intersection of the two.

End-User Robotics Programming

End-user programming is defined as “programming to

achieve the result of a program primarily for personal, rather

public use” [9]. In the case of robot programming, this means

the author is writing a routine for a specific, immediate task,

as opposed to creating a general-purpose program or a

template script that others will later modify. This review

focuses on end-user robotics programming languages due to

our goal of making the power of industrial robots accessible

to a wider audience of potential users.

In their survey of robot programming systems, [6] break

down end-user robot programming into two main categories:

manual programming systems and automatic programming

approaches.

Manual Programming Systems

Manual programming systems are defined as robot

programming interfaces where the user has direct control

over individual programming instructions. These interfaces

can present users with a text-based interface for controlling

robots, which has historically been the predominant

approach for robot programming, or use graphical

representations to give a user control over the robot.

Almost all major industrial robots can be controlled via a

proprietary, text-based programming language [6]. These

languages often draw inspiration from early programming

languages like BASIC and Pascal. Examples of these

systems include ABB’s RAPID and KUKA’s KRL, which

provide core functionality along with libraries that cover an

increasing array of common robotics tasks. In response to

this segmentation, there are efforts to create generalized

robot programming languages [19] as well as extensions for

Figure 1. The CoBlox programming environment. The left side of the environment contains the block-based robot programming

interface for Roberta, shown on the right.

(a) (b)

Figure 2. Two examples of graphical robot programming

tools: (a) Lego Mindstorms and (b) MORPHA.

general-purpose languages like C++ [23] and Python [9] to

make the language more suitable for general robot

programming tasks.

A second form of manual robot programming systems adopt

a visual programming approach and incorporate graphics and

icons into the programming interface. These environments

replace text-based instructions with icons, diagrams, or some

other graphical representation that can be rendered in two

dimensions which can then be manipulated by the user to

define instructions for the robot to follow [35]. A number of

graphical programming tools have been created to support

robot programming. The most well-known of which is the

Lego Mindstorms tool (Figure 2a), which uses visual blocks

to represent basic robot actions which the user can organize

to produce desired outcomes [30]. A second example of this

approach is MORPHA (Figure 2b), which used an icon-

based approach and flowchart-like layout to let users define

instructions for their robot [8]. MORPHA was intended to be

used in industry but never achieved widespread adoption, in

part due to the challenge of creating a meaningful icon for

every possible command.

Another graphical approach to robot programming

represents programs as trees of hierarchical tasks [20]. With

tree-based representations, the task of creating a robot

routine is broken down into a series of steps, with each step

potentially have sub-steps, resulting in a hierarchical

organization and presentation of the program. Figure 3

shows Universal Robots’ Polyscope interface, which

includes a tree-based program on the left-side of the screen.

Programming in tree-based environments is accomplished

through menu-based navigation, where new commands are

introduced by clicking buttons and defining inputs, as can be

seen in Figure 3, which shows how a new waypoint can be

added to a program. These interfaces often employ “wizards”

to walk the user through creating common sequences. This

approach has been well-accepted in practice.

Automatic Programming Systems

Automatic end-user robot programming systems give the

user the ability to program a robot, but unlike manual

programming systems, these environments hide the

programming language from the users. Examples of

automatic programming approaches include learning

systems [1], gesture-following robots that imitate human

actions [10], and the widely-used programming-by-

demonstration approach [7].

Programming-by-demonstration takes the form of physically

moving the robot into the desired position and then recording

its state. By sequentially positioning the robot in different

states, the operator can define a robot routine. This form of

input is made possible through the combination of force-free

control (meaning the robot can be moved as if it was in a

zero-gravity environment) and a hand-held device, called a

teach pendant [28]. All of the Big Four robotics

manufacturers (ABB, Kuka, Fanuc, and Yasukawa), which

account for over 60% of the world’s industrial robots,

provide a teach pendant (examples of which are shown

below in Figure 4). This makes the teach pendant approach

the primary method of end-user programming in the field.

Figure 4. Four teach pendants used for robot programming.

Block-based Programming

Block-based programming (visible on the left side of Figure

1) is an increasingly popular approach in the design of

introductory programming environments that uses a

programming-command-as-puzzle-piece metaphor to

present commands to the user [4,32]. Writing a program in a

block-based environment takes the form of dragging-and-

dropping instructions into place on screen. Each individual

command includes visual information about how and where

it can be used, ensuring that incompatible instructions cannot

be combined, thus preventing syntax errors in the program.

Additionally, block-based programming environments

include a number of features that have been identified as

productive for novice programmers, including supporting

Figure 3. Universal Robot’s tree-based programming tool.

natural language commands, presenting available commands

in logically ordered and easily browsed ways, and using a

drag-and-drop authorship mechanism that is easier and faster

than typing a command character-by-character with the

keyboard [45]. A growing body of literature shows that the

block-based approach to programming is an effective way to

enable novices to write successful programs with little prior

experience and can serve as an accessible introduction to

programming [17,21,43]. The present study contributes to

this body of research by studying adult novices in a

professional setting instead of young learners in an

educational context. Additionally, the fact that our tool is the

end goal language, not a stepping stone to professional

software development, represents a major change in the

purpose of the language.

Led by the popularity of block-based tools including Scratch

[39] and Alice [13], there is a growing ecosystem of block-

based environments that support a variety of programming

activities. Alice [13], and other block-based tools like

AgentCubes [25], are noteworthy in that they allow the user

to program three-dimensional simulations. While much of

the focus of block-based tools has been on the creation of

digital media (like stories, animations, and games), block-

based programming environments exist for modeling and

simulation tools [5,24,46], mobile application development

[40,47], playing video games [15,44], and manipulating

media [33]. At the same time, there are a growing number of

libraries and tools designed to make it easy to create new

block-based languages or embed block-based programming

interfaces into existing applications [3,18]. Finally, the

block-based programming approach has been used in

robotics kits for kids, which we discuss below.

Educational and Entertainment Robots

The final section in our review of prior work looks at

educational robots and toys, where the intersection of block-

based programming and robotics has already begun. Lego

Mindstorms [30] provides a LabView-based system to

program Lego-based creations using sensors and motors

(Figure 2a). While the interface uses an icon-based language,

rather than text-based commands, it has proven to be

powerful for beginners and more advanced users. There are

also block-based interfaces for Mindstorms kits (and other

similar robots), such as Open Roberta [50]. Beyond

Mindstorms, there are also a growing number of robotics

toys designed not as construction kits, but as robots to teach

programming using a block-based interface. Examples of

these tools include Dash and Dot [48], the Finch Robot [29],

mBots [31] , Edison [34] and Ozobots[36]. While these

educational robots share the larger goal of making robot

programming easier for novices, they lack the capabilities,

power, and the ability to support the types of complex

instructions required for a collaborative robot in industry.

COBLOX DESIGN

This paper investigates ways to make robot programming

more accessible, especially to adults with little or no

programming experience. Our approach leverages block-

based programming, a technique that has seen widespread

success in educational contexts, and applies it to the

challenge of robot programming by creating a custom robot

language, a novice-focused editor, and a robot simulation

interface. The essential design elements being investigated in

this work include the use of the block-based interface

integrated into a virtual robotics environment and the custom

designed, domain specific language that accompanies it.

Here, we provide an overview of the CoBlox design to

contextualize the comparative study. The design is presented

in greater detail in [42].

The CoBlox environment (shown in Figure 1) is comprised

of a custom-designed block-based programming interface

built with the Blockly library [18] and an embedded virtual

robot simulator, which we discuss in the following

walkthrough. Users write programs in CoBlox by dragging-

and-dropping pre-defined robot commands and snapping

them together to define sequences of instructions for the

robot to follow. Users can define movement commands by

adding the move block to their program. The text on the

move block reads: Move quickly to <somewhere>.

The quickly statement is a dropdown that specifies the

speed of the movement (the other choices are slowly and

moderately). The <somewhere> portion of the move

command specifies the Location the robot will move to

and includes a list of all previously defined Locations

along with an option to define a new Location. A

Location is a programming construct we developed that is

used to define a robot’s position, which includes its x, y, and

z coordinates and the orientation of the tool attached to the

end of the robot arm, in this case, a gripper. To define a new

position for the robot, the user selects the Add Location

option in the <somewhere> dropdown. When this happens,

the user is prompted to use the virtual robot interface to click-

and-drag the robot arm into place. Once the robot is in

position, the user clicks a check box at the top of the screen,

and gives a name to the Location (e.g.

RedBlockOrigin, as seen in the Pick and Place recipe

in Figure 1). Once the Location is defined, the

<somewhere> text in the dropdown is replaced with the

newly entered name. This process is similar to the

programming-by-demonstration approach commonly used

in robotics programming [7], just replacing the physical

robot with a virtual one and introducing the programming

construct of a Location that can be reused throughout the

block-based program. With this feature, we highlight the

drag-and-drop programming mechanisms of block-based

programming, the ability to blend input features within a

programming command (adding dropdowns and buttons

inside a programming command), and the dynamic interface

(for shifting between the programming and robot interfaces),

as ways to make the task of programming more accessible.

Another innovation of the CoBlox interface that uses the

affordances of the block-based modality is the introduction

of Robot Recipes. Robot Recipes are predefined functions

that serve as templates for commonly carried out actions. In

the study presented below, the environment includes a single

Robot Recipe called Pick and Place. The Pick and

Place recipe defines the sequence of steps a robot follows

to pick up an object in one location and place it somewhere

else, a very common task for industrial robots. Robot

Recipes are comprised of blocks available to the user, with

suggested default arguments provided to help make the

template easier to follow. For example, in the Pick and

Place recipe, the first Move command reads Move

quickly to <approach to pick>, which is meant

to let the user know that the first Location to be defined is

where to put the robot arm ahead of its approach to the

pickup position. The goal of Robot Recipes is to further

scaffold adult novice users by providing easy-to-follow

templates to carry out common robot programming tasks.

Additional features of CoBlox, including results from a

small-scale user study, can be found in [42].

EXPERIMENTAL DESIGN

To evaluate our block-based technique for industrial robot

programming we conducted a user study comparing CoBlox

to two widely-used professional tools. This section presents

the study design, including the procedure followed, data

collected, and analytic techniques used.

The robot programming environments

The independent variable in this user study is the

programming environment in which the participant was

asked to work. We compared our programming environment

against two of the mostly widely-used industrial robot

programming approaches. This ensures a benchmark against

the leading approaches, enabling prospective adopters to

assess its practical impact. We reviewed both research

literature and products currently on the market to select the

environments for comparison.

After our review of robot programming environments, we

chose two comparison environments: ABB’s Flex Pendant

and Universal Robot’s Polyscope. For all three environments

we had participants use an “offline” robot programming

model [49] which includes a robot simulation where the

virtual version of the robot can be manipulated as part of the

programming interface. For Polyscope, we added the virtual

robot by using RoboDK, a third-party simulator

recommended by Universal Robots. The offline approach

offers a number of advantages over the alternative which

requires a physical robot to be available, including cost, ease

of development and modification of programs, and

development can be accomplished while the robot is in use

[37]. At any point during program development, the user can

click the “Play” button and watch a simulation of the robot

carrying out the programmed instructions. Tutorial videos

showing how to program a robot in all three environments

are available in the online supplemental materials.

ABB’s Flex Pendant

Because nearly all of the hundreds of thousands of deployed

industrial robots are attached to a teach pendant (like those

shown in Figure 4), we selected this type of approach as one

of the comparative programming environments. After

verifying that ABB’s Flex Pendant (Figure 5) was

comparable to other widely-used teach pendants in terms of

quality, capabilities, and use in industry, we chose it as an

exemplary teach pendant programming environment for this

study. The Flex Pendant allows users to open or create

programs, edit them line by line, and input positions by

moving the robot via the attached joystick. As shown in

Figure 5, the programs authored in the Flex Pendant are

represented as text-based programs in the RAPID

programming language. Adding commands to a program via

the Flex Pendant takes the form of navigating menus and

selecting commands and parameters from lists. A tutorial

video showing this process is included in the online

supplemental materials for this paper. Note that a virtual

version of the pendant was used for the study, the reasons for

which are discussed as part of the study procedure below.

Universal Robots’ Polyscope

The second robot programming environment chosen for this

study is Universal Robot’s Polyscope tool, shown in Figure

3. This tool was chosen because it represents the most

successful—in terms of robots sold—approach to end-user

robot programming. Additionally, it uses a tree-based, dialog

driven strategy, thus providing another end-user

programming paradigm to compare to CoBlox. Authoring a

program in Polyscope takes the form of navigating through

screens and menus, defining the specifics of each step by

inputting values into text fields and clicking buttons

associated with the desired behavior. This menu-based

programming approach is distinct from conventional

programming in that the resulting program is not represented

in text, but instead as a series of nodes in a hierarchical tree.

Participants

The goal of this study is to create a robot programming

interface that is accessible and usable by adults with little or

no prior robotics programming experience. As such, we

sought to recruit a diverse set of professionals to match this

profile. Participants were recruited from an office of a

multinational engineering conglomerate located in the

eastern United States. Only employees outside of the

Figure 5. The virtual version of ABB’s Flex Pendant

programming interface.

company’s Robotics Division for whom computer

programming is not one of their core competencies and who

do not do it in their jobs were invited to participate. This

population matches our target users in that they do not

program computers or work directly with industrial robots as

part of their daily job requirements. The study was approved

by the institutional review board at the primary research

center with permission of the industry partner.

We recruited participants by inviting them via inter-office

email or face-to-face contact, offering a complimentary

lunch as an incentive. Approximately 80% of contacted

employees accepted our appointment request, leading to 110

participants. To assign potential participants to environments

in a uniform manner, we first divided them into three groups:

research interns (17), researchers (44), and non-researchers

(49). Participants from each group were then sorted

alphabetically and assigned to the treatments round robin.

Of the 110 scheduled users, 89 participated, and 67 were

included in the final results. Seventeen participants were

disqualified for procedural violations (e.g., an emergency

meeting pulling the participant away from the task) and

another 5 participants were removed because they had taken

more than five programming courses in their lifetime. Of the

67 participants, 59 were male and 8 were female. The

average age of the participants was 35.3 years (SD 9.1), they

had an average professional experience of 9.7 years (SD 8.4)

and had taken an average of 1.5 programming courses (SD

1.4) with over half of the participants (37 out of 67) having

one or fewer programming courses in their lives. Participants

were from a variety of work areas, including development,

sales, testing and quality assurance, and various forms of

engineering.

User Study Procedure

For each participant in the study, we followed the same

procedure, shown below in Figure 6. During setup, we

connected their work machine to our remote virtual machine

that had the robotics software pre-loaded and gave them a

reference sheet for their programming environment. The

procedure was conducted at participants’ desks to minimize

the disruption participation would cause to their workday.

Each participant was then asked to (i) fill out a brief

demographic survey, (ii) watch an approximately 10 min

training video, and (iii) complete as many of the specified

sub-tasks as possible during the allotted time of 60 minutes.

While it would have been preferable to have no time limit,

conducting studies with busy employees necessitated the

chosen approach, and we felt that access to this

representative population was worth this shortcoming. The

session ended with a post survey, which asked participants

about their experiences working on the programming

activity. The researcher left during the programming portion

of the procedure because we wanted participants to rely on

the training materials as much as possible. The participant

was provided an instant messaging account to contact the

researcher if they had questions. The researcher reappeared

at the participant’s desk after the allotted time to ensure the

user had encountered no major problems.

Training

Prior to attempting the assigned task users were trained on

their programming environment. To provide the most

realistic training, we mimicked both ABB and Universal

Robots’ practice of providing training videos. We created an

approximately ten-minute video for each environment. Each

video discussed the basic layout of the tool, how to navigate

the 3D simulation environment, how to add common

commands, how to use task templates, how to run programs,

and how to jog the robot. Each video’s content covered the

same materials, with the details varying according to each

environment. In addition to the video-based training, we also

included a single, two-sided 8.5 by 11-inch reference sheet

that users could refer to throughout the task, which contained

screenshots and explanations of the commands used during

the video. All of these materials are available in the online

supplemental materials that accompany this paper.

Tasks

Participants were asked to complete a series of tasks inspired

by real-world robotics tasks—specifically pick and place—

and designed to be challenging to finish in an hour. The four

tasks were designed to be cumulative and of increasing

difficulty. Each task was logged and evaluated separately.

The first task was to open and close the robot gripper, and to

move the robot arm approximately one inch to the right and

then to the left. This was intended to serve as an initial,

orienting task to get users familiar with the robot and its

movements. The second task was a basic pick and place

routine with no outside constraints, asking the users to move

the red block shown in Figure 1 from its starting point to

point A. Task 3 was a pick and place routine, but with a small

wall to be avoided in between the beginning and ending

locations (moving the block from point A to point B in Figure

1). The fourth and final task was a pick and place with

reorientation, picking up the block from point B and placing

it on its side at point C. These four tasks represent realistic

programming activities for an industrial robot, as positioning

the robot arm and moving and reorienting objects are core to

the functioning and use of these types of robots. The exact

wording of the task instructions can be found in the

supplemental materials.

Pilot Study

To ensure that all unforeseen issues were fixed prior to data

collection, we piloted our study with 12 participants. As a
Figure 6. The timeline for the study procedure.

result, we identified two task descriptions that users found

confusing, which we addressed by revising the text; a bug

related to the robotic gripper that caused some programs to

hang, which we patched; and a missing reset feature in the

Universal Robots environment, which we added. These

improvements led to a much lower procedural failure rate

during the main data collection period.

Data Collection and Analysis

Survey and Interviews

Survey responses were collected from all 67 participants. To

analyze the textual data of the survey responses, we used a

Grounded Theory approach to determine higher level themes

[41]. To establish a common set of codes and themes, two

researchers applied open axial coding to the same subset of

survey responses and then established a common

understanding and defined a structure for the most

commonly mentioned concepts. To validate the analysis of

the survey results, two additional researchers extracted their

main findings from a subset of the responses independently.

Self-Reported Progress

We collected progress logs from every participant during

their session, which included the completion state and time-

on-task for each task. This data allows us to compare user

progress in terms of time and completion rate.

Programs Authored

For each participant, we collected the program they authored

as well as a video of each participant’s program running. We

used these videos to verify that self-reported progress logs

were accurate and to evaluate the correctness of the program

with respect to the stated objective of each task. For each of

the four tasks, a 10-point grading rubric was created to

evaluate the correctness of the program. To ensure a

consistent quality grade, two researchers scored each video

individually, and all disagreements in scores were resolved

through discussion. The grading rubric can be found in the

online supplemental materials.

RESULTS

The findings section is broken up into two sections. First, we

report on an analysis of the programming portion of the

study, reporting differences in completeness, correctness,

time on task, and findings from a qualitative analysis into

types of errors made by each condition. The second portion

of this section presents results from an analysis of the post

survey, looking at differences in reported usefulness, ease-

of-use, and satisfaction, as well as report on patterns in

responses to open-ended prompts of users’ experiences

during the programming task.

Results from the Programming task

Data collected during each participant’s session included

time-on-task for each of the four tasks and videos of their

final programs, which were evaluated for correctness. This

section presents the result of these analyses.

Progress and Time on Task

The programming activity was broken down into four

cumulative tasks, with each task building off the

functionality authored in the previous task and increasing in

complexity. As participants progressed through the

programming activity, they logged when they completed

each task. We use these self-reported logs to track how many

tasks participants completed, and the time required to

complete each task. The number of participants who

attempted each task is shown above the lightly shaded

portion of each column in Figure 7. The solid portion of each

column reflects the number of participants who scored 6 or

higher on each task. The average time on task of those who

attempted the task is shown in Table 1.

 Time on Task (in seconds)

Condition Task 1 Task 2 Task 3 Task 4

CoBlox 438.36 843.64 481.43 621.29

Flex Pendant 1679.08 1003.32 506.93 605.00

Polyscope 940.73 1398.59 801.76 653.09

Table 1. Time-on-task in seconds for each condition, including

only participants that attempted each task.

All 67 participants attempted the first programming task with

many completing it. Comparing the average time-on-task

across the three conditions for the first task, we see a

significant difference (F(2, 65) = 15.97, p < .001). A Tukey

Post Hoc HSD shows there to be significant differences

between all three conditions (CoBlox and Flex Pendant p <

.001; CoBlox and Polyscope p < .05; Flex Pendant and

Polyscope p < .01), with CoBlox users completing the first

task the fastest and Flex Pendant users taking the longest.

The second task, attempted by almost all participants, again

shows a significant difference between the conditions (F(2,

61) = 3.50, p < .05), with the Polyscope participants

significantly slower than the CoBlox participants (p < .05).

Task 3 represents a turning point. Tasks were cumulative, so

participants who did not complete one task did not attempt

any later tasks. All but one CoBlox participant attempted

Tasks 3 and 4, but only 12 of the 23 Flex Pendant participants

Figure 7. Number of participants that attempted and

completed each task, grouped by condition.

and 11 of the 22 Polyscope participants attempted Task 4.

This steep drop-off in participation corresponds with a

shifting trend in time to completion. As the number of

participants attempting tasks in Polyscope and Flex Pendant

dwindles, the time on task of those who did attempt the latter

tasks becomes comparable to CoBlox. This is true for both

Tasks 3 and 4. However, there is a significant difference

between the number of people who successfully complete

Tasks 3 and 4 in the CoBlox condition compared to the

others, as shown in Figure 7. In summary, users complete

more tasks, more quickly, using CoBlox.

Correctness

As Figure 7 shows, the number of participants who

successfully completed a task is not identical to the number

of participants who attempted the next task. Therefore, we

separately discuss the correctness of programs. When only

including participants who attempted each task, there was no

statistically-significant difference by condition in scores on

Tasks 1, 2, or 4. On Task 3, there is a significant difference

between the three conditions (F(2, 50) = 3.23, p < .05). A

Tukey HSD Post Hoc calculation shows the CoBlox

condition to be significantly different than the Flex Pendant

condition (p < .05). In summary, users achieve the same

level of quality when using CoBlox, even though they

complete more tasks more quickly.

Patterns in Errors

An analysis of participants’ final projects reveals two major

types of errors across the three conditions: missing code

snippets and incorrect location specification.

Missing pieces of code errors were identified in programs for

18 (81.8%) of the 22 CoBlox users, 14 (60.9%) of the 23 Flex

users, and 16 (72.7%) of the 22 Polyscope users. The two

most common errors resulting from missing code were

failing to avoid obstacles (i.e. the wall or the floor) and

skipping steps defined in the programming tasks. In CoBlox,

10 (55.6%) of the 18 programs with missing code resulted in

collisions with the floor due to not lifting up the arm

vertically before moving it horizontally. In Flex Pendant, 7

(50%) of the 14 programs with missing code resulted in their

robot arm skipping steps specified in each of the

programming tasks. In Polyscope, 11 (68.8%) and 12 (75%)

of the 16 programs with missing code resulted in the robot

arm colliding with the wall and the floor, respectively. 13

(81.3%) of the 16 programs resulted in the robot arm

skipping steps specified in the tasks.

Incorrect location specification, meaning the participant

moved the arm to the wrong for the task (e.g. moving the arm

through the floor), accounted for errors in 12 (54.5%) of the

22 CoBlox users, 10 (43.5%) of the 23 Flex users, and 16

(72.7%) of the 23 Polyscope users. The mechanism for

location specification was outside the scope of the CoBlox

design. In summary, CoBlox users made the same types of

mistakes as users of the other two environments.

We also want to highlight two errors unique to Flex

participants: failure to compile (1 of 23 participants) and

incorrect parameters (1 of 23 participants). To control the

gripper, Flex Pendant requires multiple properly ordered,

consecutive instructions in order to compile. Both CoBlox

and Polyscope provide this functionality through a single

dropdown command. Further, in the Flex Pendant interface

participants had to select parameters from a number of

different menus and interfaces, making it more likely to

select incorrect parameters. While these errors were

infrequent, we mention them to highlight the fact that such

mistakes are not possible in the Polyscope or CoBlox due to

the composition constraints designed into the system.

Results from the Post Survey

In this section, we present an analysis of participants’

experiences using the different tools by analyzing responses

given on the survey at the conclusion of the study protocol.

The survey largely consisted of 5-point Likert scale

questions. In this analysis, we group similar questions

together to create composite measures for perceived ease-of-

use, learnability, and satisfaction. The results of this analysis,

grouped by condition, are shown in Figure 8. The survey also

included free response questions, which are also included in

the analysis. The survey, including how the questions were

grouped, can be found in the online supplemental materials.

Ease-of-Use

Our measure for ease-of-use for each of the tools was

calculated by combining responses to prompts asking about

how easy the tool was to use overall, how easy it was to do

specific things (like add commands or fix errors), and how

user-friendly the interface was. For this section, we

combined 7 prompts related to ease-of-use that were found

to correlate at an acceptable level across all conditions

(Cronbach’s α = .86). Comparing the aggregate ease-of-use

Figure 8. Composite scores for three attitudinal dimensions for the three conditions based on responses to the post survey. The

differences between the three conditions are statistically significant for all three categories.

scores between the three conditions, we find the scores to be

significantly different from each other F(2, 65) = 3.45, p <

.05. A Tukey post hoc HSD calculation shows the difference

to be between CoBlox and Polyscope (p < .05).

These results show users found the CoBlox interface to be

easier to use than the other two interfaces, a finding that is

further supported by the responses given to the short answer

questions from the post survey. When asked what they liked

about the programming environment they used, 76% of

CoBlox users give a response that identified its ease of use,

saying things like “Very easy to use. I made it a point not to

use the reference sheet” and “User friendly interface and

environment”. Half of the Polyscope participants and 20% of

the Flex Pendant users attended to the ease-of-use of the

interface as something they liked about the environment.

A third data point that further illustrates this difference in

ease of use is the number of participants in each condition

who needed to ask a researcher for assistance during the

study. Seven of the 22 CoBlox participants asked for help

during the study, compared to 12 of the 23 Flex Pendant

participants, and 14 of the 22 Polyscope participants. Again,

this data reinforces that the CoBlox interface is the easiest to

use of the three. In summary, users perceived CoBlox as

easier to use than the other environments.

Learnability

The composite learnability score was calculated by

combining responses to seven survey prompts related to how

easy the environment was to learn. Examples of these

prompts include: “Overall, it was easy to learn to use”, “I

learned to use the whole environment quickly”, and “I could

use this environment without the reference sheet”. The seven

questions in this section correlate with each other at a level

beyond the .80 level conventionally used (Cronbach’s α =

.86). Running an analysis of variance calculation shows the

composite learnability scores to be significantly different

from each other across the three conditions F(2, 65) = 4.93,

p = .01. A Tukey post hoc HSD calculation shows the

differences to be significant between CoBlox and Polyscope

(p < .05) and CoBlox and Flex Pendant (p = .01), with no

difference being found between Flex Pendant and Polyscope.

On the free response portion of the survey, a small number

of participants gave feedback related to how easy or difficult

it was to learn the environment. For example, one CoBlox

participant wrote: “It was easy to learn and saw the output

change immediately from my code. That makes change easy

to understand.” This type of response is different from the

way participants in the Flex Pendant condition spoke about

how easy it was to learn to program in that interface, giving

responses such as: “The program is not intuitive. It will

require more than a tutorial to learn, and must have

training.” In summary, users perceived CoBlox as easier to

learn than the other environments.

Satisfaction

For the composite satisfaction measure, four prompts were

combined, including “I am satisfied with this programming

environment” and “I would recommend this tool to someone

new to robot programming”. These questions all correlated

with each other (Cronbach’s α = .86), suggesting they are

measuring the same underlying perception of the interface

used. There was a significant difference in user satisfaction

across the three conditions F(2, 65) = 5.27, p < .01. A post

hoc comparison using a Tukey HSD shows there to be a

significant difference between CoBlox and Flex Pendant (p

= .01) and CoBlox and Polyscope (p < .05), with CoBlox

receiving higher satisfaction scores. In summary, users were

more satisfied with CoBlox than the other environments.

Criteria CoBlox
Flex

Pendant
Polyscope

Faster Task Completion 

More Correct

Easier to Use 

Easier to Learn 

Higher Satisfaction 

Table 2. Summary of the comparative findings

DISCUSSION

Improving the design of Robot Programming Interfaces

The first contribution of this work is showing how the block-

based CoBlox design performed relative to two of the most

widely-used industrial robot programming approaches. Our

results, summarized in Table 2, show adult novices using

CoBlox were able to successfully complete more

programming tasks more quickly than those using

conventional interfaces, without sacrificing accuracy.

Further, CoBlox had significantly higher scores for ease-of-

use, ease-of-learning, and levels of satisfaction relative to the

other environments. Collectively, these findings show

CoBlox, and the block-based approach to robotics

programming more broadly has great potential for making

industrial robotics programming more accessible to adults

with little to no formal programming training.

Challenges not solved through CoBlox

CoBlox was very successful at increasing the speed and ease

with which users entered instructions. However, we learn as

much from what was not solved as what was.

First, logical errors, in which users missed steps (such as not

lifting the robot arm before moving it horizontally), were

prevalent in all three conditions. While being able to see

readable instructions in an intuitive format could have helped

users see when there were missing steps, it didn’t. Therefore,

more research is needed to provide strategies for helping

users with such common mistakes, specifically thinking

about how the robotics programming context can perpetuate

these errors while also potentially provide design

opportunities to help users not make these mistakes.

Second, the prevalence of incorrect location specification as

a cause of error suggests that participants also had difficulty

with the interface provided to manipulate the robot arm. This

finding suggests that more effort must go into interface

design. When asked about frustrations related to the

programming interface, many participants (37 out of the 67)

mentioned some aspects of manipulating the virtual robot.

For example, one participant stated: “the positional system is

bad, you could miss the point unless you put in exactly the

location. There should be more convenient 3D positioning

system.” This finding replicates what we found in our small-

scale pilot study [42]. This leads to potential directions for

future work. One of the emerging findings that will be

shaping our next iteration of this work is thinking more

carefully about how to better integrate the robot positions as

part of the programming task, and redesign the virtual robot

space in hopes of making it more intuitive and accessible.

Bringing Innovations for Kids to Adult Environments

One of the major contributions of this work is showing the

potential for taking design innovations targeted at one group

of novices (in this case, young learners) and employing them

for another group of novices (adults). One hypothesis we

brought to this work was that the block-based approach to

programming that has been successful for young learners

could help adult novices. The ease of assembling programs

with the drag-and-drop interface, the removal of syntax

errors, the ability to define domain-specific semantics, and

the affordances of the graphical presentation all contributed

to making robot programming easier for adult novices.

In fact, an argument against the use of block-based languages

in professional settings is the perception that block-based

tools are “not real programming” and less powerful than

conventional text-based tools [45]. However, growing

applications of block-based programming, such as

distributed computing [11], parallel computing [16], and data

sciences [2], show this to not be the case. Further, block-

based programming may be particularly well suited to the

context of collaborative robots, which represents an in-

between use of programming – someone who perhaps will

never become an expert programmer but needs to program

occasionally, maybe no more than one small program each

day (to be run by the robot for the next day).

Adult Novices and Collaborative Robots

One of the goals of this work is to create a robot

programming interface that is powerful enough to be of use

in professional and industrial settings, while also being

intuitive enough for adult novices. Creating such an interface

is important giving the shifting nature of manufacturing and

industrial jobs in the 21st century. Increasingly, positions that

were once labeled “manual labor” are changing.

Collaborative robots are one emerging form of the new 21st-

century blue collar position that tasks workers with working

alongside, and interacting with, robots. Accessible

programming interfaces are essential for helping workers

make this transition to working alongside autonomous

machines. Further, given the focus on speed and accuracy,

CoBlox may have a home in the workplace of tomorrow.

Limitations

While we tried to make the conditions as similar as possible

there were some differences that introduce limitations to the

study. For example, the CoBlox and Flex Pendant conditions

used the same virtual robot interface, but, due to technical

reasons, the Polyscope condition used a different virtual

robot interface, thus introducing a difference that may

influence our findings. While there was some evidence that

these differences may have contributed to differing

experiences for users as seen in a small number of comments,

it does not seem substantial enough to explain the significant

differences between conditions reported in this work given

that the there was no difference in capabilities between the

interfaces.

A second limitation relates to the diversity of the tasks that

participants were asked to do and how it speaks to the larger

universe of activities that robots can perform. The robots

used in this study all had open/close grippers equipped, and

the participants were asked to program a “pick and place”

routine. This is a relatively narrow set of functionality that is

serving as representative for all industrial robotics. While we

intend on introducing additional Robot Recipes and

broadening the scope of activities the language has been

designed for, there is still work to be done to verify that the

positive outcomes from this work remain when tasks become

larger, more complicated, and more diverse.

A final limitation relates to our recruitment of participants,

all of which came from the same company. This results in a

lack of geographic diversity and a shared background that

could potential affect our results. We view this as a relatively

minor, but noteworthy, concern and something we seek to

address in future iterations of this work.

CONCLUSION

The goal of this work was to explore ways of making

industrial robot programming more accessible to people with

little or no prior programming experience. Drawing on

successful design strategies used to introduce young learners

to the practice of programming, we created CoBlox and

showed how it outperforms the most wide-spread robotics

programming approaches used today. The analysis shows the

CoBlox helped adult novices program more tasks

successfully by decreasing time on task while maintaining

quality. In addition, the participants found it easier to use and

enjoyed it more. Collectively, with this work, we advance

our understanding of ways to make robot programming more

accessible to a wider range of users. We view robotics as

merely a single example of a field in which a block-based

interface can be used. This study shows the block-based

approach making a robotics programming task easier for

novice adults, providing an empirical basis for future work

concerned with making programming accessible to all. In

doing so, we contribute to the larger goal of giving people

access to and control over the technologies around us.

REFERENCES

1. Brenna D. Argall, Sonia Chernova, Manuela Veloso,

and Brett Browning. 2009. A survey of robot learning

from demonstration. Robotics and autonomous

systems 57, 5: 469–483.

2. A. Cory Bart, J. Tibau, D. Kafura, C. A. Shaffer, and

E. Tilevich. 2017. Design and Evaluation of a Block-

based Environment with a Data Science Context.

IEEE Transactions on Emerging Topics in Computing

PP, 99: 1–1.

3. David Bau. 2015. Droplet, a blocks-based editor for

text code. Journal of Computing Sciences in Colleges

30, 6: 138–144.

4. David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon,

and Franklyn Turbak. 2017. Learnable programming:

blocks and beyond. Communications of the ACM 60,

6: 72–80. https://doi.org/10.1145/3015455

5. A Begel and E Klopfer. 2007. Starlogo TNG: An

introduction to game development. Journal of E-

Learning.

6. Geoffrey Biggs and Bruce MacDonald. 2003. A

survey of robot programming systems. In Proceedings

of the Australasian conference on robotics and

automation, 1–10.

7. Aude Billard, Sylvain Calinon, Ruediger Dillmann,

and Stefan Schaal. 2008. Robot programming by

demonstration. In Springer handbook of robotics.

Springer, 1371–1394.

8. Rainer Bischoff, Arif Kazi, and Markus Seyfarth.

2002. The MORPHA style guide for icon-based

programming. In Robot and Human Interactive

Communication, 2002. Proceedings. 11th IEEE

International Workshop on, 482–487.

9. Douglas Blank, Deepak Kumar, Lisa Meeden, and

Holly Yanco. 2006. The Pyro toolkit for AI and

robotics. AI magazine 27, 1: 39.

10. Cynthia Breazeal and Brian Scassellati. 2002. Robots

that imitate humans. Trends in cognitive sciences 6,

11: 481–487.

11. Brian Broll, Akos Lédeczi, Peter Volgyesi, Janos

Sallai, Miklos Maroti, Alexia Carrillo, Stephanie L.

Weeden-Wright, Chris Vanags, Joshua D. Swartz, and

Melvin Lu. 2017. A Visual Programming

Environment for Learning Distributed Programming.

In Proceedings of the 2017 ACM SIGCSE Technical

Symposium on Computer Science Education (SIGCSE

’17), 81–86. https://doi.org/10.1145/3017680.3017741

12. J. Edward Colgate, J. Edward, Michael A. Peshkin,

and Witaya Wannasuphoprasit. 1996. Cobots: Robots

For Collaboration With Human Operators.

13. S. Cooper, W. Dann, and R. Pausch. 2000. Alice: a 3-

D tool for introductory programming concepts.

Journal of Computing Sciences in Colleges 15, 5:

107–116.

14. C Duncan, T Bell, and S Tanimoto. 2014. Should

Your 8-year-old Learn Coding? In Proceedings of the

9th Workshop in Primary and Secondary Computing

Education (WiPSCE ’14), 60–69.

15. Sarah Esper, Stephen R. Foster, and William G.

Griswold. 2013. CodeSpells: embodying the metaphor

of wizardry for programming. In Proceedings of the

18th ACM conference on Innovation and technology

in computer science education, 249–254.

16. Annette Feng, Eli Tilevich, and Wu-chun Feng. 2015.

Block-based programming abstractions for explicit

parallel computing. In Blocks and Beyond Workshop

(Blocks and Beyond), 2015 IEEE, 71–75.

17. D Franklin, G Skifstad, R Rolock, I Mehrotra, V

Ding, A Hansen, D Weintrop, and D Harlow. 2017.

Using Upper-Elementary Student Performance to

Understand Conceptual Sequencing in a Blocks-based

Curriculum. In Proceedings of the 2017 ACM SIGCSE

Technical Symposium on Computer Science

Education (SIGCSE ’17), 231–236.

18. N. Fraser. 2015. Ten things we’ve learned from

Blockly. In 2015 IEEE Blocks and Beyond Workshop

(Blocks and Beyond), 49–50.

https://doi.org/10.1109/BLOCKS.2015.7369000

19. E. Freund and B. Luedemann-Ravit. 2002. A system

to automate the generation of program variants for

industrial robot applications. In IEEE/RSJ

International Conference on Intelligent Robots and

Systems, 1856–1861 vol.2.

20. Thomas A. Fuhlbrigge, Gregory Rossano, Hui Zhang,

Jianjun Wang, and Zhongxue Gan. 2010. Method and

apparatus for developing a metadata-infused software

program for controlling a robot.

21. Shuchi Grover, Roy Pea, and Stephen Cooper. 2015.

Designing for deeper learning in a blended computer

science course for middle school students. Computer

Science Education 25, 2: 199–237.

22. Martin Hägele, Walter Schaaf, and Evert Helms.

2002. Robot assistants at manual workplaces:

Effective co-operation and safety aspects. In

Proceedings of the 33rd ISR (International

Symposium on Robotics), 7–11.

23. Robert Hopler and Martin Otter. 2001. A versatile

C++ toolbox for model based, real time control

systems of robotic manipulators. In Intelligent Robots

and Systems, 2001. Proceedings. 2001 IEEE/RSJ

International Conference on, 2208–2214.

24. M. S Horn, C Brady, A Hjorth, A Wagh, and U

Wilensky. 2014. Frog pond: a codefirst learning

environment on evolution and natural selection. In

Proceedings of the 2014 conference on Interaction

design and children, 357–360.

25. Andri Ioannidou, Alexander Repenning, and David C.

Webb. 2009. AgentCubes: Incremental 3D end-user

development. Journal of Visual Languages &

Computing 20, 4: 236–251.

26. C. Kelleher and R. Pausch. 2005. Lowering the barriers

to programming: A taxonomy of programming

environments and languages for novice programmers.

ACM Computing Surveys 37, 2: 83–137.

27. S. Kock, T. Vittor, B. Matthias, H. Jerregard, M.

Källman, I. Lundberg, R. Mellander, and M.

Hedelind. 2011. Robot concept for scalable, flexible

assembly automation: A technology study on a

harmless dual-armed robot. In 2011 IEEE

International Symposium on Assembly and

Manufacturing (ISAM), 1–5.

https://doi.org/10.1109/ISAM.2011.5942358

28. Daisuke Kushida, Masatoshi Nakamura, Satoru Goto,

and Nobuhiro Kyura. 2001. Human direct teaching of

industrial articulated robot arms based on force-free

control. Artificial Life and Robotics 5, 1: 26–32.

29. Tom Lauwers and Illah Nourbakhsh. 2010. Designing

the finch: Creating a robot aligned to computer

science concepts. In AAAI Symposium on Educational

Advances in Artificial Intelligence.

30. Lego Systems Inc. 2008. Lego Mindstorms NXT-G

Invention System. Retrieved from

http://mindstorms.lego.com

31. Makeblock Co., Ltd. 2017. mBot. Retrieved

September 18, 2017 from

http://www.makeblock.com/

32. J. H Maloney, M Resnick, N Rusk, B Silverman, and

E Eastmond. 2010. The Scratch programming

language and environment. ACM Transactions on

Computing Education (TOCE) 10, 4: 16.

33. J Maloney, M Nagle, and J Mönig. 2017. GP: A

General Purpose Blocks-Based Language. In

Proceedings of the 2017 ACM SIGCSE Technical

Symposium on Computer Science Education (SIGCSE

’17), 739–739.

34. Microbric Pty, Ltd. 2017. Edison Programmable

Robot. Retrieved from https://meetedison.com/

35. Brad A. Myers. 1990. Taxonomies of visual

programming and program visualization. Journal of

Visual Languages & Computing 1, 1: 97–123.

36. Ozobot & Evollve, Inc. 2017. Ozobot. Retrieved from

http://ozobot.com/

37. Zengxi Pan, Joseph Polden, Nathan Larkin, Stephen

Van Duin, and John Norrish. 2012. Recent progress

on programming methods for industrial robots.

Robotics and Computer-Integrated Manufacturing 28,

2: 87–94. https://doi.org/10.1016/j.rcim.2011.08.004

38. J. N. Pires, K. Nilsson, and H. G. Petersen. 2005.

Industrial robotics applications and industry-academia

cooperation in Europe. IEEE Robotics Automation

Magazine 12, 3: 5–6.

39. Mitchell Resnick, Brian Silverman, Yasmin Kafai,

John Maloney, Andrés Monroy-Hernández, Natalie

Rusk, Evelyn Eastmond, Karen Brennan, Amon

Millner, Eric Rosenbaum, and Jay Silver. 2009.

Scratch: Programming for all. Communications of the

ACM 52, 11: 60.

40. Wolfgang Slany. 2014. Tinkering with Pocket Code, a

Scratch-like programming app for your smartphone.

In Proceedings of Constructionism 2014.

41. A. Strauss and J. Corbin. 1994. Grounded Theory

Methodology: An Overview. In Strategies of

Qualitative Inquiry. Sage Publications, Inc, Thousand

Oaks, CA, 158–183.

42. D. Weintrop, D. C. Shepherd, P. Francis, and D.

Franklin. 2017. Blockly goes to work: Block-based

programming for industrial robots. In 2017 IEEE

Blocks and Beyond Workshop, 29–36.

https://doi.org/10.1109/BLOCKS.2017.8120406

43. D Weintrop and U Wilensky. In Press. Comparing

Blocks-based and Text-based Programming in High

School Computer Science Classrooms. ACM

Transactions on Computing Education (TOCE).

44. D. Weintrop and U. Wilensky. 2012. RoboBuilder: A

program-to-play constructionist video game. In

Proceedings of the Constructionism 2012 Conference.

45. D Weintrop and U. Wilensky. 2015. To Block or Not

to Block, That is the Question: Students’ Perceptions

of Blocks-based Programming. In Proceedings of the

14th International Conference on Interaction Design

and Children (IDC ’15), 199–208.

https://doi.org/10.1145/2771839.2771860

46. M. H. Wilkerson-Jerde and U. Wilensky. 2010.

Restructuring Change, Interpreting Changes: The

DeltaTick Modeling and Analysis Toolkit. In

Proceedings of the Constructionism 2010 Conference.

47. David Wolber, Hal Abelson, Ellen Spertus, and Liz

Looney. 2014. App Inventor 2: Create Your Own

Android Apps. O’Reilly Media, Beijing.

48. Wonder Workshop, Inc. 2017. Dash & Dot. Retrieved

from https://www.makewonder.com/

49. Y. F. Yong and M. C. Bonney. 1999. Off-Line

Programming. In Handbook of Industrial Robotics,

Shimon Y. Nof (ed.). John Wiley & Sons, Inc., 353–

371. https://doi.org/10.1002/9780470172506.ch19

50. Open Roberta. Retrieved September 18, 2017 from

https://www.open-roberta.org/en/welcome/

