How Do Developers Document
Database Usages in Source Code?

Mario Linares-Vasquez, Boyang L1, Christopher Vendome, and Denys Poshyvanyk

e ASE
SE/NERU. wiuaweMary 2015

Database-centric application (DCA)

DCAs are software systems that rely on databases to persist records using database objects.

Database-centric application (DCA)

DCAs are software systems that rely on databases to persist records using database objects.

Challenges

Challenges

STUDENT

ID Num | PWD | Gender | Address Year

DBManager.getAlllnfoByStudentID ()

Challenges

Num

STUDENT
ID N PWD | Gender | Address Year
PWD ID | Gender | Address Year

ST_LOGIN

ST_DETAILS

DBManager.getAlllnfoByStudentID ()

Challenges

H 88

STUDENT

ID Num | PWD | Gender | Address Year

DBManager.getAlllnfoByStudentID ()

Num PWD

l ‘ e A

Gender | Address | VYear gCtSTL()giﬂO getSTDetaﬂsO

ST_LOGIN ST_DETAILS

Challenges

UlLstudent.buttonClickShowAllInfo()

Ulstudent.quaryAlllnfoByID ()
ID | Num | PWD | Gender | Address Year ‘

DBManager.getAlllnfoByStudentID ()

STUDENT

l ‘ e A

Num PWD

Gender | Address | VYear getSTLoginO getSTDetaﬂsO

ST_LOGIN ST_DETAILS

Challenges

* How the model is described by a schema

e How the database is used in the source code

Related works

PERGAMON Information Systems 28 {2003) 597-61%

www clevier.convlocat

Extracting the extended entity-relationship model
from a legacy relational database ™

Reda Alhajj*

Department of Computer Science, Advanced database Systems and Applications Laboratory, University of Calgary, Calgary
Alta., Canada T2N IN4

Received 2 May 2001; reccived in revised form 29 May 2002; accepted 29 May 2002

Alstract

The maintenance of an existing database depends on the depth of understanding of its characteristics. Such an
understanding is casily lost when the developers disperse. The situation becomes worse when the related documentation
i 2. This paper addresses this issue by extracting the extended entity-relationship schema from the relational
schema. We developed algorithms that investigate characteristics of an exisling acy database in order Lo identify
candidate keys of all relations in the relational schema, 1o locate foreign keys, and to decide on the
between the given relations. Based on this analysis, a graph consistent with the entity-relationship diagram is derived to
contain all possible uniary and binary relationships between (he given rel The minimum and maximum
cardinalities of each link in the men links within the graph are identified and
categorized, if any. The latter information is necessary Lo optimize foreign keys relaied information. Finally, the last
steps in the process involve(when applicable) suggssting improvements on the original conceptual design, deciding on
relationships with attributes, many-to-many and = 3) relationships, and identifying is-a links, User involvement
in the process is minimized o the case of having multiple choices, where the system does not have the semantic
knowledge required 1o decide on a certain choice.
© 2002 BElsevier Science Lud. All rights reserved.

appropriate links

Keywards: Algorithms; Database reverse Data ses; Entity-relationship

modet Relational database

I g legacy da

1. Introduction

Organizations are tuming to system re-enginecking as a means of upgrading their existing information
systems in situations where it appears to be a less expensive alternative to system replacement. Reverse
engineering is viewed as a critical part of the whole system re-engineering process because successful system
re-cngincering highly depends on effective reverse engincering. In general, reverse engineering can be

*Recommended by Profssor P. Loucopoulos.
Tel: +1403-210-M453; fax: + 14032244707,
pail address: alhajja cpsc.ucalgary.ca (R. Alhajj)

0306437903/ see front matter © 2002 Ekevier Science Lid. All rights reserved
PU: S0306-4379{02)00042-X

Related works

PERGAMON Information Systems 28 (2003) 597618

www clevier.convlocate

Extracting the extended entity-relationship model
from a legacy relational database ™
Reda Alhajj*

Department of Compuser Science, Advanced database Systems and Applications Laborgiory, University of Calgary, Calgary.
Alie.. Canada T2N IN4

Reocived 2 May 2001; received in revised form 29 May 2002; accepted 29 May 2002

Alstract

The maintenance of an existing database depends on the depth of understanding of its characteristics. Such an
understanding is casily lost when the developers disperse. The situation becomes worse when the related documentation
is missing. This paper addressss this issue by extracting the extended entity-relationship schema from the relational
schema. We developed algorithms that investigate characteristics of an exisling legacy database in order (0 identify
candidate keys of all relations in the relational schema, to locate foreign keys, and to decide on the appropriate links
between the given relations. Based on this analysis, a graph c it with the entity-rel hip diagram is derived (o
contain all possible uniary and binary relationships beween the given relations. The minimum and maximum
cardinalities of each link in the mentioned graph are determined, and extra links within the graph are identified and
categorized, if any. The latter information is necessary to optimize foreign keys related information. Finally, the last
steps in the process involve (when applicable) suggesting improvements on the original conceptual design, deciding on
relationships with attributes, many-to-many and r-ary {n3 3) relationships, and identifying is-alinks. User involvement
in the process is minimized to the case of having multiple choices, where the system does not have the semantic
knowledge required 1o decide on a certain choice.

i@ 2002 Blsevier Science Lud. All rights reserved.

Keywards: Algorithms; Da
maodel, Relational database

abase reverse Database re-eng I legacy databases; Entity-relationship

1. Introduction

Organizations are tuming to system re-engineefing as a means of upgrading their existing information
systems in situations where it appears to be a kess expensive alternative to system replacement. Reverse
engineering is viewed as a critical part of the whole system re-engineering process because successful system
re-engineering highly depends on effective reverse engineering. In general, reverse engineering can be

“Recommended by Professor P. Loucopoulos.
*Tel: +1403-210-M53; fax: + 1-403-284-4707.
wail address: albajjis cpsc.ucalgary.ca (R. Alhaji)

0306437903/ see front matter © 2002 Ekevier Science Lid. All rights reserved.
PU: S0306-4379{02)00042-X

Procesdings 12th IEEE Int. Conf. on Data Enginsering ICDE'96, New-Orleans (USA),

Pebruary 26 - March 1, 1996, IEEE Press, pp. 218-227.

Towards the Reverse Engineering of
Denormalized Relational Databases

J-M. Petit, F. Toumani, J-F, Boulicaut, J. Kouloumdjian
Laboratoire d'Ingénierie des Systemes d’Information
INSA Lyon, 20 av. Albert Finstein, Bat. 501
F-69621 Villeurbanne cedex
email: jean-narc. petit@lisi.insa-lyon.fr

Abstract

This paper describes o method bo cope with denor-
malized relational schemas in o dalobuse reverse ene
gineering process. We propose two main steps to im-
prove the understanding of data semantics. Firstly we
catruct inclusion dependencics by analyzing the equi-
join queries embedded in application programs and by
querying the databuse cxtension. Secondly we show
how to discover only functional dependencies which in-
flucnce the way attributes should be restructured. The
wethod is inferactive since an expert ser fuas to val-
idate the presumptions on the elicited d
Moreover, a restructuring phase lends (o o relational
sehema in third normal form provided with key con-
straints and referentiol integrity construints. Finally,
we sketch how an Entity-Relationship schema can be
derived from such information.

ndencirs,

1 Introduction

The aim of a Database Reverse Engineering
(DBRE) process is to improve the understanding of
the data semantics. Many aspects of database evolu-
tion, especially for old databases where data seman-
tics has been lost for years, roquire a DBRE process
[7]. Such current situations are the re-engineering of
the so-called legacy systems or the federation of dis-
tributed databases. Many works have already been
done where a conceptual schema (often based on an
extension of the EntityRelationship (ER) modsl [4])
is derived from a hierarchical database [15, 2], a nel-
work database [2] or a relational database [3, 15, 13,
2,21, 5). A DBRE process is naturally sp
major steps [18):

« Eliciting the data semantics from the existing sys-
tem

Various sources of information can be relevant
for tackling this task, ¢.g., the physical schema,

1063633296 $5.00 © 1996 IEXE

218

the dotabase extenion, the application programs,
but especially expert users

» Expressing the extracted semantics with a high
level data model
This task cansists in a schema translation activity
and gives rise to several difficulties since the can-
cepts of the original model do not overlap those
of the target madel

In the context of relational databases, most of U
DBRE methads [15, 13, 21] focus only on the schema
translation task since they assume that the constraints
(eg., functional dependencies or foreign keys) are
available at the beginning of the process. However,
to cope with real-life situations, such strong assump-
tiohs are not realistic since old versions of DataBase
Management Systems (DBMSs] do not support such
declarations,

Some recent works [19, 22, 1, 10] have proposed
independently to alleviate the assumptions on the

nowledge avail g

#ble a priori. Given a schema in third
Normal Form (3NF), the key idea is to fetch the
needed infarmation from the data manipulation state-
ments embecded in application programs. We have
already interesting results in this direction [16, 17, 18],
Unlike (5], we do not constrain the relational schema
with a consistent naming of key attributes and unlike
(18, 21, 10, 9], we do not need to have all the structural
consiraints befare applying the method

A current assumption in existing DBRE methods,
including our previous results, is to impose the rela-
tional sehema to be in 3N ure that each rela-
tion corresponds to a unique abject of the application
damain. Nevertheless, Johannesson has shown that
several objects, the sa-called hidden abjects, can be en-
coded in a INF relation [10]. He introduces a formal
framework fo handle such cases in a DBRE process.
Unlike Johannesson who still has strong assumptions

Related works

PERGAMON Information Systems 28 (2003) 597-618

www clevier.convlocate

Extracting the extended entity-relationship model
from a legacy relational database ™
Reda Alhajj*

Department of Computer Science, Advanced database Systems and Applications Laboratory, University of Calgary, Calgary.
Alie.. Canada T2N IN4

Reocived 2 May 2001; received in revised form 29 May 2002; accepted 29 May 2002

Alstract

The maintenance of an existing database depends on the depth of understanding of its characteristics. Such an
understanding is casily lost when the developers disperse. The situation becomes worse when the related documentation
. This paper addresses this issue by extracting the extended entity-relationship schema from the relational
schema. We developed algorithms that investigate characteristics of an exisling legacy database in order (0 identify
candidate keys of all relations in the relational schema, to locate foreign keys, and to decide on the appropriate links
between the given relations. Based on this analysis, a graph c it with the entity-rel hip diagram is derived (o
contain all possible uniary and binary relationships beween the given relations. The minimum and maximum
cardinalities of each link in the mentioned graph are determined, and extra links within the graph are identified and
categorized, if any. The latter information is necessary Lo optimize foreign keys relaied information. Finally, the last
steps in the process involve (when applicable) suggesting improvements on the original conceptual design, deciding on
relationships with attributes, many-to-many and r-ary {n3 3) relationships, and identifying is-alinks. User involvement
in the process is minimized to the case of having multiple choices, where the system does not have the semantic
knowledge required 1o decide on a certain choice.

i@ 2002 Blsevier Science Lud. All rights reserved.

5 miss

Keywards: Algorithms; Da
maodel, Relational database

abase reverse Database re-eng I legacy databases; Entity-relationship

1. Introduction

Organizations are tuming to system re-engineefing as a means of upgrading their existing information
systems in situations where it appears to be a kess expensive alternative to system replacement. Reverse
engineering is viewed as a critical part of the whole system re-engineering process because successful system
re-engineering highly depends on effective reverse engineering. In general, reverse engineering can be

“Recommended by Professor P. Loucopoulos.
*Tel: +1403-210-M53; fax: + 1-403-284-4707.
Email adiress alhajja cpsc.ucalgary.ca (R. Alhaji)

0306437903/ see front matter © 2002 Ekevier Science Lid. All rights reserved.
PU: S0306-4379{02)00042-X

Procesdings 13th IEEE Int.

Pebruary 26 - March 1, 1996, IEEE Press, pp. 218-227.

Conf. on Data Engineering ICDE'9G, New-Orleans (USA),

Towards the Reverse Engineering of
Denormalized Relational Databases

J-M. Petit, F. Toumani, J-F, Boulicaut, J. Kouloumdjian
Laboratoire d'Ingénierie des Systemes d’Information
INSA Lyon, 20 av. Albert Finstein, Bat. 501
F-69621 Villeurbanne cedex
email: jean-narc. petit@lisi.insa-lyon.fr

Abstract

This paper describes o method bo cope with denor-
malized relational schemas in o dalobuse reverse ene
gineering process. We propose two main steps to im-
prove the understanding of data semantics. Firstly we
catruct inclusion dependencics by analyzing the equi-
join queries embedded in application programs and by
querying the databuse cxtension. Secondly we show
how to discover only functional dependencies which in-
flucnce the way attributes should be restructured. The
wethod is inferactive since an expert ser fuas to val-
idate the presumptions on the elicited d
Moreover, a restructuring phase lends (o o relational
sehema in third normal form provided with key con-
straints and referentiol integrity construints. Finally,
we sketch how an Entity-Relationship schema can be
derived from such information.

ndencirs,

1 Introduction

The aim of a Database Reverse Engineering
(DBRE) process is to improve the understanding of
the data semantics. Many aspects of database evolu-
tion, especially for old databases where data seman-
tics has been lost for years, roquire a DBRE process
[7]. Such current situations are the re-engineering of
the so-called legacy systems or the federation of dis-
tributed databases. Many works have already been
done where a conceptual schema (often based on an
extension of the EntityRelationship (ER) modsl [4])
is derived from a hierarchical database [15, 2], a nel-
wark database [2] or a relational database [3, 15, 13,
2,21, 5). A DBRE process is naturally sp
major steps [18):

« Eliciting the data semantics from the existing sys-
tem

Various sources of information can be relevant
for tackling this task, ¢.g., the physical schema,

1063633296 $5.00 © 1996 IEXE

218

the dotabase extenion, the application programs,
but especially expert users

» Expressing the extracted semantics with a high
level data model
This task cansists in a schema translation activity
and gives rise to several difficulties since the can-
cepts of the original model do not overlap those
of the target madel

In the context of relational databases, most of U
DBRE methads [15, 13, 21] focus only on the schema
translation task since they assume that the constraints
(eg., functional dependencies or foreign keys) are
available at the beginning of the process. However,
to cope with real-life situations, such strong assump-
tiohs are not realistic since old versions of DataBase
Management Systems (DBMSs] do not support such
declarations,

Some recent works [19, 22, 1, 10] have proposed
independently to alleviate the assumptions on the

nowledge avail g

#ble a priori. Given a schema in third
Normal Form (3NF), the key idea is to fetch the
needed infarmation from the data manipulation state-
ments embecded in application programs. We have
already interesting results in this direction [16, 17, 18],
Unlike (5], we do not constrain the relational schema
with a consistent naming of key attributes and unlike
(18, 21, 10, 9], we do not need to have all the structural
consiraints befare applying the method

A cusrent assumption in existing DBRE methods,
including our previous results, is to |mpoie the rela-
tional schema to be in that each rela-
tion corresponds o a unique uh;e:[ot the application
damain. Nevertheless, Johannesson has shown that
several objects, the sa-called hidden abjects, can be en-
coded in a INF relation [10]. He introduces a formal
framework fo handle such cases in a DBRE process.
Unlike Johannesson who still has strong assumptions

An Empirical Analysis of the Co-evolution of Schema and
Code in Database Applications

Dong Qiu Bixin Li

ABSTRACT

Zhendong Su
University of California, Davis, USA
su@cs.ucdavis.edu

1. INTRODUCTION

Modern are amang the ty used and

complex They y w0

changes o data, database schemas, and code. 1t is challenging to

manage these changes and ensure that everything co-cvolves con-

sistently. For example, when a database schema is modified, all the
I

A ppl is @ software system that collects, manay
and retrieves data, which are typically stored in a database managed
by a database management system (DBMS) and organized w.ri.
database schemas. For example, most online services are powered
by database applications. Wikis, social networking systems (SNS).
Web-based content wstems (CMS), systems,

that interacts with the database must be changed accordi
Although datshase evolution and software evolution have been ex-
tensively studied in isol co-evolution of schema and code
has largely heen unexplared.

is presents the first comprehensive empirical analysis of
the co-evolution of datahase schemas and code in ten popular large
open-source database applications, totaling over 160K revisions.
Our major findings include: 1) Datsbase schemas evolve freguemtly
during the pplication lfecyce, exhibing a variey of change types

the

enterprise resource planning systems (ERP) are all database applic
tions. As Figure | illustrates. a program needs 10 obey the structur
of the data organization defined by a schema when it aceesses the
data. Namely. a schema is a mediator that manages the interactions
between code and data, bridging their gap.
are subject 1o 1o mod-
ifed system roguirements; datsbase applicatians are 1o exception.
Cleve et al. [5] observe that little work exists on understanding the
data and code.

with similar d 2) Overall,
schema changes induce significant mﬁumj modifications, while
certain change types have more impact on code than others: and
3) Co-change analyses can be visble to automate or assist with
database application evolution. We have also observed that: 1) $05%
of the schema changes happened in 20-30% of the tables. while
nearly 40% of the tables did not change: and 2) Referential integrity
constraints and stored procedurcs arc rarcly used in our studied
subjects. We believe that our study reveals new insights into how
database applications cvolve and uscful guidclines for designing
assistive tools 10 aid their evoluti

Categories and Subject Descriptors

H.2.7 [Software Engineering]: Distribution. Maintenance, and
Enhancement; H.2.1 [Database Management]: Logical Design—
Schema and subschema

General Terms

Language, Measurement

Keywords

Co-cvolution, databasc application, cmpirical analysis

Permission to make digital of bard copées of all of pat of this work for
il ov classroom use s granted without fee provided that copies are

profit oc conmercial copies
e this ice ol he ol Lo o he s p. T copy atbrs i,
repablish, t0 post on servers or ko redistribute 1 Hists, requires pricr specific

permission andior 3 fee.
ESEC/FSE 13, August 1826, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 075-1-4S03-2239-9/1 408 _ $15.00.

Different from traditional applications, the evolution of database
applications is more complex. For example, consider a system that
uses a table USER 1o store both user authentication information and
ather personal data. Now the system requirements change, and the
sysiem needs w store et aumm.mm |mnm1:mm\ and personal

USER m:

new tables, say USER LOGIN and USER_| DFFAH..S Data and
application code must be synchronized to be consistent with the new
schemas. First, the original data organization should be migrated
to the new onc defined by USER_LOGIN and USER_DETAILS.
Second, the original application code that accesses data in USER
must be modified to correctly access the newly organized data in
USER_LOGIN and USER_DETAILS.

Figure 1 illustrates these twa types of co-evolution in database
plications: 1) data co-cvolve with schemas, and 2) code co-cvolves
‘with schemas. The first type of co-evolution involves three main
tasks: 1) predicting and estimating the effects before the proposed
schema changes are performed: ii) rewriting the existing DBMS-
kevel querics to work on the new schemas; and iii) migrating data
to the new schemas. The second type involves two main tasks: i)
evaluating the cost of reconciling the existing code wrt. the new
schemas before any schema changes: and if) locating and modifying
all impacted code regions after applying the schema changes

The database community has addressed the first co-cvolution
problem gracefully 1o support automatic data migration and DBMS-
lewel query rewriting to operate on the ncw schemas [6,7). However,
little work has considered the second co-cvolution problem. Its
difficulties are twofold First, query updates and data migration
for the first problem are donc by DB Administrators (DBAJ, who
have the domain knowledge. In contrast, the lpphcalinn developers,
who Tevel of
capture the whole evolution process of the ot et In

Related works

PERGAMON Information Systems 28 {200

m-a8 —

www clevier.convlocat

Extracting the extended entity-relationship model
from a legacy relational database ™

Reda Alhajj*

. Advanced databax Systems and Applications Laborgiory, Unicersity of Calgary, Calgary
Alta., Canada T2N IN4

Department of Computer Scie

Reocived 2 May 2001; received in revised form 29 May 2002; accepted 29 May 2002

Alstract

The maintenance of an existing database depends on the depth of understanding of its characteristics. Such an
understanding is casily lost when the developers disperse. The situation becomes worse when the related documentation
i 2. This paper addresses this issue by extracting the extended entity-relationship schema from the relational
schema. We developed algorithms that investigate characteristics of an exisling legacy database in order (0 identify
candidate keys of all relations in the relational schema, o Lu.u: foreign keys, and to decide on the appropriate links
between the given relations. Based on this analysis, a graph it with the entity-rel hip diagram is derived (o
contain all pomible wniary and binary relationships between ‘he given relations The minimum and maximum
cardinalities of each link in the mentioned graph are determined, and extra links within the graph are identified and
categorized, if any. The latter information is necessary Lo optimize foreign keys relaied information. Finally, the last
steps in the process involve(when applicable) suggssting improvements on the original conceptual design, deciding on
relationships with attributes, many-to-many and r-ary {n3 3) relationships, and identifying is-alinks. User involvement
in the process is minimized o the case of having multiple choices, where the system does not have the semantic
knowledge required 1o decide on a certain choice.
© 2002 BElsevier Science Lud. All rights reserved.

Keywards: Algorithms; Database revers: Database re-eng I g legacy da
maodel, Relational database

ses; Entity-relationship

1. Introduction

Organizations are tuming to system re-engineefing as a means of upgrading their existing information
systems in situations where it appears to be a less expensive alternative to system replacement. Reverse
engineering is viewed as a critical part of the whole system re-engineering process because successful system
re-engineering highly depends on effective reverse engineering. In general, reverse engineering can be

*Rexommendad by Profissar P. Loucopouios.
*Tel: +1-403-210-M53; fax: + | -403-224-4707.,
nal address albajja cpsc-ucalgary.ca (R. Alhafi)

0306437903/ see front matter © 2002 Ekevier Science Lid. All rights reserved
PU: S0306-4379{02)00042-X

Procesdings 12th IEEE Int. Conf. on Data Enginsering ICDE'96, New-Orleans (USA),

Pebruary 26 - March 1, 1996, IEEE Press, pp. 218-227.

An Empirical Analysis of the Co-evolution of Schema and
Code in Database Applications

Towards the Reverse Engineering of
Denormalized Relational Databases

J-M. Petit, F. Toumani, J-F, Boulicaut, J. Kouloumdjian
Laboratoire d'Ingénierie des Systemes d’Information
INSA Lyon, 20 av. Albert Finstein, Bat. 501
F-69621 Villeurbanne cedex
email: jean-narc. petit@lisi.insa-lyon.fr

Abstract

This paper describes o method bo cope with denor-
malized relational schemas in o dalobuse reverse ene
gineering process. We propose two main steps to im-
prove the understanding of data semantics. Firstly we
catruct inclusion dependencics by analyzing the equi-
join queries embedded in application programs and by
querying the databuse cxtension. Secondly we show
how to discover only functional dependencies which in-
flucnce the way attributes should be restructured. The
wethod is inferactive since an expert ser fuas to val-
idate the presumptions on the elicited d
Moreover, a restructuring phase lends (o o relational
sehema in third normal form provided with key con-
straints and referentiol integrity construints. Finally,
we sketch how an Entity-Relationship schema can be
derived from such information.

ndencirs,

1 Introduction

The aim of a Database Reverse Engineering
(DBRE) process is to improve the understanding of
the data semantics. Many aspects of database evolu-
tion, especially for old databases where data seman-
tics has been lost for years, roquire a DBRE process
[7]. Such current situations are the re-engineering of
the so-called legacy systems or the federation of dis-
tributed databases. Many works have already been
done where a conceptual schema (often based on an
extension of the EntityRelationship (ER) modsl [4])
is derived from a hierarchical database [15, 2], a nel-
wark database [2] or a relational database [3, 15, 13,
2,21, 5). A DBRE process is naturally sp
major steps [18):

« Eliciting the data semantics from the existing sys-
tem

Various sources of information can be relevant
for tackling this task, ¢.g., the physical schema,

1063633296 $5.00 © 1996 IEXE

218

the dotabase extenion, the application programs,
but especially expert users

» Expressing the extracted semantics with a high
level data model
This task cansists in a schema translation activity
and gives rise to several difficulties since the can-
cepts of the original model do not overlap those
of the target madel

In the context of relational databases, most of U
DBRE methads [15, 13, 21] focus only on the schema
translation task since they assume that the constraints
(eg., functional dependencies or foreign keys) are
available at the beginning of the process. However,
to cope with real-life situations, such strong assump-
tiohs are not realistic since old versions of DataBase
Management Systems (DBMSs] do not support such
declarations,

Some recent works [19, 22, 1, 10] have proposed
independently to alleviate the assumptions on the

nowledge avail g

#ble a priori. Given a schema in third
Normal Form (3NF), the key idea is to fetch the
needed infarmation from the data manipulation state-
ments embecded in application programs. We have
already interesting results in this direction [16, 17, 18],
Unlike (5], we do not constrain the relational schema
with a consistent naming of key attributes and unlike
(18, 21, 10, 9], we do not need to have all the structural
consiraints befare applying the method

A cusrent assumption in existing DBRE methods,
including our previous results, is to |mpoie the rela-
tional schema to be in that each rela-
tion corresponds o a unique uh;e:[ot the application
damain. Nevertheless, Johannesson has shown that
several objects, the sa-called hidden abjects, can be en-
coded in a INF relation [10]. He introduces a formal
framework fo handle such cases in a DBRE process.
Unlike Johannesson who still has strong assumptions

Dong Qiu Bixin Li

ABSTRACT

Zhendong Su
University of California, Davis, USA
su@cs.ucdavis.edu

1. INTRODUCTION

Modern are among the ty used and
complex y Th
changes to data, daisbase schemas, and code. It is :IuLknsulgw
manage these changes and ensure that everything co-evolves con-
sistently. For example, when a database schema is modified. all the
that interacts with the database must be changed accordingly.
Although datshase evolution and software evolution have been ex-
tensively stdied e co-evolution of schema and code
has largely heen unexplared.

This paper prescrts the first comprebensive empirical analysis of
the co-evolution of datahase schemas and code in ten popular large
open-source database applications, totaling over 160K revisions.
Our major findings include: 1) Datsbase schemas evolve freguemtly
during e applcaton ifeeycie, cxhibiing a varicy of change

the

A PP is @ software system that collects, manay
and retrieves data, which are typically stored in a database managed
by a database management system (DBMS) and organized w.ri.
database schemas. For example, most online services are powered

tions. As Figure | illustrates, & program needs o obcy
of the data organization defined by a schema when it aceesses the
data. Namely. a schema is a mediator that manages the interactions
between code and data, bridging their gap.

are subject 1o 1o mod-
ifed system roguirements; datsbase applicatians are 1o exception.
Cleve et al. [5] observe that little work exists on understanding the

pes
with similar d 2) Overall,
schema changes induce significant cmumj modifications, while
certain change types have more impact on code than others: and
3) Co-change analyses can be visble to automate or assist with
database application evolution. We have also observed that: 1) $05%
of the schema changes happened in 20-30% of the tables. while
nearly 40% of the tables did not change: and 2) Referential integrity
constraints and stored procedures are rarcly used in our studied
subjects. We believe that our study reveals new insights into how
database applications cvolve and uscful guidclines for designing
assistive tools 1o aid their evolution

Categories and Subject Descriptors

H27 [Software Engineering]: Distribution, Maintenance, and
Enhancement; H 2.1 [Database Management]: Logical Design—
Schema ane subschema

General Terms
Language, Measurement

Keywords

Co-cvolution, databasc application, cmpirical analysis

mnmm. 0 miske digital o liard copies of all of part of this work for

! orclasroom wse is srnted withoutfee proided tha copes e
b profit oc conmercial that copies
bear this netice and the full citation on the first page. To copy otherwise, 1o
repablish, t0 post on servers or ko redistribute 1 Hists, requires pricr specific

permissica andior 3 fee.
ESECASE 13, August 15-26, 2013, Saint Petersbusg. Russia
Copyright 2013 ACM 97514503 2237-9/1 408 _ $15.00.

data and code.
ficrent from traditional applications, the evolution of datsbase
applications is more complex. For example, consider a system that
uses a table USER 1o store both user authentication information and
ather personal data. Now the system requirements change, and the
sysiem needs w store e aumm.mcm mmrm:nm\ and personal

USER m:

new tables, sy IJSER LOGIN and USER_| DFFAH.S Data and
application code must be synchronized to be consistent with the new
schemas. First, the original data organization should be migrated
to the new onc defined by USER_LOGIN and USER_DETAILS.
Second, the original application code that accesses data in USER
must be modified to correctly access the newly organized data in
USER_LOGIN and USER_DETAILS.

Figure I illustrates these two types of co-evolution in database
plications: 1) data co-cvolve with schemas, and 2) code co-cvolves
‘with schemas. The first type of co-evolution involves three main
tasks: 1) predicting and estimating the effects before the proposed
schema changes are performed: ii) rewriting the existing DBMS-
kevel querics to work on the new schemas; and iii) migrating data
to the new schemas. The second type involves two main tasks: i)
evaluating the cost of reconciling the existing code wert. the new
schemas before any schema changes: and i locating and modifying
all impacted code regions after applying the schema changes

The database community has addressed the first co-cvolution
problem gracefully 1o support automatic data migration and DBMS-
lewel query rewriting to operate on the ncw schemas [6,7). However,
little work has considered the second co-cvolution problem. Its
difficulties are twofold First, query updates and data migration
for the first problem are donc by DB Administrators (DBAL.
have the domain knowledge. In contrast, the application develope:
who have differcnt level of database knowledge, may not prociscly
capture the whole evolution process of the database sructure. In

No previous work has been done to understand database documentation practices at source
code level.

Goal

How Do Developers Document Database
Usages in Source Code?

Methodology

GitHub projects

Methodology

GitHub 38" "| 6" projects

!

Identified the projects using SQL ‘I 8 82 8 projects
’

Methodology

GitHub 381,161 projects
Identified the projects using SQL ‘I 8 828 projects

O >1 * >1 3"' ‘|3 projects

Methodology

>0

GitHub e

3,113 projects \ e

A mining-based analysis

Methodology

»20 -

G i t H u b A survey 147 developers

3,113 projects
on

A mining-based analysis 33,045 methods

Methodology

,0-0-0@

A survey 147 developers Results
GitHub

. —

A mining-based analysis 33,045 methods

Results

Research Questions

RQ1. Do developers document database-related methods

RQ2. Do developers update comments for database-related methods

RQ3. How difficult is to understand the database schema constraints along call-chains

RQ1. Do developers comment methods in source code
that locally execute SQL queries and statements?

: SQ1. Do you add/write documentation SQ2. Do you write source code comments
comments to methods in the source code? detailing database schema constraints?

25(17.01%)

32(21.77%)

122(82.99%)

¢ /

ZYes =No 115(78.23%) ;"i ZYes = No
. 4

RQ1. Do developers comment methods in source code
that locally execute SQL queries and statements?

115(78 23%) / e¥os aNo

RQ1. Do developers comment methods in source code
that locally execute SQL queries and statements?

“The database schema and documentation takes care of
that. | can always look at the table definition very easily.”

“Comments related to the database schema and its
constraints | consider to be irrelevant to the code using it.
The schema, its details, and any quirks about it should be

115(78 23%) i Yes = No outlined in a separate document.”

RQ1. Do developers comment methods in source code
that locally execute SQL queries and statements?

23%

115(78 23%) / a¥os aNo

In the 3,113 projects, we identified a total of
33,045 methods invoking SQL. ueries/statements.

RQ2. Do developers update comments of database-related
methods during the evolution of a system?

< SQ4. When you make changes to database
otdoe Howoften doyou fad outoated related methods, how often do you update

comments in source code?
comments?

.29(19.73%) |

N Never Rarely Sometimes
Fairly Often m Always

RQ2. Do developers update comments of database-related
methods during the evolution of a system?

- SQ3. How often do you find outdated SQ4. When you make changes to database
= | L T related methods, how often do you update
b : comments?

,29(19.73%) _31(21. 08%) | ‘.

N Never = Rarely Sometimes = Never = Rarely Sometimes
Fairly Often m Always Fairly Often m Always

RQ2. Do developers update comments of database-related
methods during the evolution of a system?

projects

8.5% Had
explicit releases

projects

RQ2. Do developers update comments of database-related
methods during the evolution of a system?

methods (1v0ke SQL)

projects

8.5% Had
explicit releases

projects

RQ2. Do developers update comments of database-related
methods during the evolution of a system?

methods (1v0ke SQL)

projects ﬁZ&Z% were updated
8.5% Had methods
explicit releases

projects

RQ2. Do developers update comments of database-related
methods during the evolution of a system?

methods 1,y0ke SQL)

projects ﬁZ&Z% were updated
8.5% Had U
explicit releases
82.8% didn’t
projects updated comments

methods

RQ2. Do developers update comments of database-related
methods during the evolution of a system?

methods 1hyoke SQL)

projects ﬁ23.2% were updated
8.50/0 Had methOdS
explicit releases
82.8% didn’t 17.2% updated
projects updated comments comments

methods methods

RQ2. Do developers update comments of database-related
methods during the evolution of a system?

methods

(90%,100%] 56
(80%,90%] 2
(70%,80%] 4
(60%,70%] 0
(50%,60%] 4
(40%,50%)] 21
(30%,40%] 14
(20%,30%] 3
(10%,20%] 1
(0%,10%)] 1

frequency that the comments were updated when the method was modified

RQ2. Do developers update comments of database-related
methods during the evolution of a system?

e ‘IO 6 methods

(90%,100%)] 56
(80%,90%
(70%,80%

]
1 J_— A 40(37.73%)
]

(60%,70%

(50%,60%
SEssssssasssaEes FEEEEEEEEEEEEEEEEEEEEEEEEEE NSNS NN NN SN NN NN NN NN EEEEE NN NN EEEEEEEEEEEEEEEEENEEEEEEEEEEEN x
= (40%,50% =

]
(30%,40%] 14 >
(20%,30%]

]

(10%,20%
(0%,10%] 1

n
IIIIIIIIIIIIIIIII B e R AR R R EEERENRERBENRERERERRRRRRRREREERNEREEEERERNERERERRRRRRRERERERERESEERERERERERERERERERSESRSESSSI 88NN

0 10 20 30 40 50 60

frequency that the comments were updated when the method was modified

RQ3. How difficult is it for developers to understand
propagated schema constraints along call-chains?

SQ5. How difficult 1s it to trace the schema constraints (e.g;, foreign key
= violations) from the methods with SQL statements to top-level method callers

50(34.01%)

ttttttttttttttttttt

= Very Easy = Easy Moderate
Hard m Very Hard

Lessons learnt

(1) Documenting database usages and constraints is not a
common practice in source code methods

(i1) Developers do not update comments when changes
are done to database-related methods

(111) Tracing schema constraints through call-chains in the
call graph is not an easy task in most ot the cases

Lessons learnt

(1) Documenting database usages and constraints is not a
common practice in source code methods

(i1) Developers do not update comments when changes
are done to database-related methods

(111) Tracing schema constraints through call-chains in the
call graph is not an easy task in most ot the cases

Documentation

Automation

Calling context

Summary

Challenges
hh

5 g % Ulstudent.buttonClickShowAllInfo()
g_ = 4

UlLstudent.quaryAlllnfoByID ()
STUDENT 2 £

1D | Num | PWD | Gender | Address | Year | . "‘

| [l 2 DBManager.getAlllnfoByStudentID ()

l ...‘ . .

0 [Nom [Pwo [. D | Gender | Address | vesr | .. | getSTLogin() getSTDetails()

ST_LOGIN ST_DETAILS

Summary

Challenges Methodology
= ULstudent.buttonClickShowAllTnfo()
- UlLstudent.quaryAlllnfoByID () ’ Wi -
_ _ STUDENT “
1D | Num | pWD | Gender | Address | vear | . " . A survey 147 developers Results
o] R IS S L S DBManager.getAlllnfoByStudentID () GItHUb

e 3,113 projects
" ‘ B \ on
o L B S e T getSTLogin() getSTDetails) =

A mining-based analysis 33,045 methods Results
ST_LOGIN ST_DETAILS

Summary

Challenges

STUDENT

1B | Num | PWD | Gender | Address | Year

D | Num | PWD -

[...\'

ST_LOGIN ST_DETAILS

ULstudent.buttonClickShowAllTnfo()

UlLstudent.quaryAlllnfoByID ()

\ 4

DBManager.getAlllnfoByStudentID ()

| 4 &

getSTLogin() getSTDetails()

Methodology

»20 -

GitHub (i

3,113 projects
on

A mining-based analysis

- @

Results

33,045 methods

Results

Research Questions

RQ1. Do developers document database-related methods

RQ2. Do developers update database-related methods

RQ3. How difficult is to understand database schema along call-chains

Summary

Challenges Methodology

ULstudent.buttonClickShowAllTnfo()

UlLstudent.quaryAlllnfoByID () i l @
STUDENT i i - o
D Pp e e e L - g - Asurvey 147 developers Results
el e] e DBManager.getAlllnfoByStudentID () GItHUb

l \' Y Qy 3,113 projects ‘
on
0 [Hum [pwo [. 1D | Gencer | Address | Vear | . getSTLogin() getSTDetails()

A mining-based analysis 33,045 methods

- ®

Results
ST_LOGIN ST_DETAILS
Research Questions Lessons learnt
RQ1. Do developers document database-related methods ® Dm:umcm.n}g d.ata.hasc Rdes AH ComsEmE ot a Documentation
common practice in source code methods
RQ2. Do developers update database-related methods (i) Developers do not update comments when changes Autoniaton

are done to database-related methods

RQ3. How difficult is to understand database schema along call-chains

(i) Tracing schema constraints through call-chains in the

; : Calling context
call graph is not an easy task in most of the cases 8

	Mario Linares-Vasquez, Boyang Li, Christopher Vendome, and Denys Poshyvanyk
	Database-centric application (DCA)
	Database-centric application (DCA)
	Challenges
	Challenges
	Challenges
	Challenges
	Challenges
	Challenges
	Related works
	Related works
	Related works
	Related works
	Goal
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Summary
	Summary
	Summary
	Summary

