Automatically Detecting Integrity Violations In
Database-Centric Applications

Boyang Li
College of William and Mary
Williamsburg, VA 23185
Email: boyang@cs.wm.edu

Abstract—Database-centric applications (DCAs) are widely
used by many companies and organizations to perform various
control and analytical tasks using large databases. Real-world
databases are described by complex schemas that oftentimes
contain hundreds of tables consisting of thousands of attributes.
However, when software engineers develop DCAs, they may
write code that can inadvertently violate the integrity of these
databases. Alternatively, business analysts and database admin-
istrators can also make errors that lead to integrity violations
(semantic bugs). To detect these violations, stakeholders must
create assertions that check the validity of the data in the rows
of the database tables. Unfortunately, creating assertions is a
manual, laborious and error-prone task. Thus, a fundamental
problem of testing DCAs is how to find such semantic bugs
automatically.

We propose a novel solution, namely DACITE, that enables
stakeholders to automatically obtain constraints that semantically
relate database attributes and code statements using a combina-
tion of static analysis of the source code and associative rule
mining of the databases. We rely on SAT-solvers to validate if
a solution to the combined constraints exists and issue warnings
on possible semantic bugs to stakeholders. We evaluated our
approach on eight open-source DCAs and our results suggest that
semantic bugs can be found automatically with high precision.
The results of the study with developers show that warnings
produced by DACITE are useful and enable them to find semantic
bugs faster.

I. INTRODUCTION

Database-centric applications (DCAs) are widely used by
many companies and organizations to perform various control
and analytical tasks, e.g., computing decision rules using data
analysis. DCAs are often written using some popular program-
ming languages like Java, and they access and manipulate data
from databases. These databases in practice are quite large;
they contain hundreds of tables consisting of thousands of
attributes [62]. Business analysts and database administrators
create and maintain logical and physical schemas of databases
that include sophisticated checks — assertions that check va-
lidity of the data in the database tables [17]. Creating these
assertions is an intellectually laborious process that requires
business analysts to understand deeply the semantics of the
data. For example, a simple assertion that specifies that males
do not give birth is often not encoded explicitly in databases
of insurance companies based on our examination of several
commercial database schemas; many assertions can be inferred
only by analyzing the data in these databases. Given that it
is expensive to create and encode assertions, many database
schemas do not contain them, and this situation may result in
incorrect data put into databases, thus, violating the integrity
of these databases.

When software engineers develop DCAs they write code
that pulls data from the databases, performs computations
on this data and updates the data in these databases. Users

Denys Poshyvanyk
College of William and Mary
Williamsburg, VA 23185
Email: denys@cs.wm.edu

Mark Grechanik
University of Illinois at Chicago
Chicago, IL 60607
Email: drmark@uic.edu

of these DCAs can violate the integrity of databases simply
by entering incorrect data. For example, a doctor may make
a mistake in the gender of a patient who gave birth when
using a medical coding DCA to submit billing information
for this patient. An insurance company may later retrieve
this patient’s data and compute a reimbursement for the
procedure. Of course, a simple check based on the assertion
Vp, Patient(p) A Gender(p) = M — —Treatment(Birth) can
solve this problem. Moreover, a flight booking system should
not allow selling more seats for a flight than the plane’s capac-
ity. Unfortunately, manually creating thousands of assertions is
infeasible for complex database schemas, since programmers
must obtain deep understanding of the semantics of the data.

In addition, programmers can make mistakes while de-
veloping DCAs by incorrectly using the values of database
attributes. Based on our participation in large-scale projects,
we observed that making incorrect assumptions in code about
schemas is not that uncommon. Given that many schemas
contain thousands of attributes and evolve rapidly in practice,
it is easy to make mistakes about the semantics of the data
that these attributes hold and about relations among these
attributes. The source of errors often lies in the complexity
of schemas that business analysts and database administra-
tors create and maintain leading them to formulate incorrect
assertions. Modern databases have complex semantics and
mastering them requires a steep learning curve.

Often programmers lack the knowledge of the impact caused
by changing the code of some DCA on other DCAs that
interoperate using databases. This lack of knowledge is an
effect of the Curtis’ law that states that application and
domain knowledge is thinly spread and only one or two team
members may possess the full knowledge of a software system
[25]. The effect of this law combined with the difficulty of
comprehending large-scale database schemas and the high
complexity of the source code of DCAs results in integrity
violations that are very difficult to localize.

The other source of errors is the disparity in evolving
database schemas and the source code of DCAs. Business
analysts and system administrators usually maintain schemas,
and programmers maintain the source code of DCAs. If a
database administrator modifies some schemas without in-
forming all programmers whose DCAs are affected by this
change, then some DCAs will keep using databases according
to the obsolete schemas resulting in integrity violations.

We propose a novel solution for DcA Constraints resolutlon
and TEsting (DACITE) that enables stakeholders to auto-
matically obtain assertions that semantically relate database
attributes and codes. That is, after annotating a small number
of expressions and statements in the source code that obtain
values of attributes from the databases, a static analysis is per-

formed to obtain some constraints that relate these attributes.
On the database side, we apply associative rule mining (ARM)
to obtain constraints directly from the data that relate different
attributes. Next, we rely on SAT-solvers to determine if a
solution exists for the combined constraints. If no such solution
is found, then DACITE marks these constraints as potential
semantic errors and issues warnings to stakeholders. Our paper
makes the following noteworthy contributions;

« We propose a novel solution to the problem of detecting
potential integrity violations in DCAs. To the best of our
knowledge, this is the first solution to this difficult and
important problem;

« We implemented DACITE, evaluated it on several open-
source DCAs and determined that it is effective and
efficient in finding certain classes of integrity violations;

« We conducted a study with developers who used DACITE
for detecting semantic bugs. The results demonstrate that
developers find that DACITE warnings are useful and
they can find semantic bugs efficiently;

« DACITE and evaluation data are publicly available [6].
II. PROBLEM STATEMENT

In this section, we describe a fault model for semantic bugs
in DCAs, explain common sources of failures and classify
them, formulate generic properties against which we check
DCAs, and provide the problem statement.

A. Fault Model

A fault model includes constraints, abstractions, and ac-
tions that specify incorrect or unacceptable behavior of an
engineered system [26, 71]. With respect to DCAs, a fault
model describes violations of constraints on the data. Consider
that {C4} is the set of constraints that are encoded in the
application’s source code, A and {Cp} is the set of constraints
that are encoded as checks in the database, D. When we write
C without parentheses, we denote a single constraint from
the set of constraints. Constraints contain expressions over
database attributes and they are instantiated when variables
that represent these attributes are assigned concrete data. We
construct the following formula: 3d € D, s.t.(Ca(v — d) =
—-Cp(v — d))V (Cp(v = d) = =Ca(v — d)). That is,
if there exists an assignment of values from the data ranges
that the database attributes can take to the variables in the
constrains such that the negation of the instantiated constraint
from the database implies an instantiated constraint from the
application and vice versa, we say that there is a semantic bug
in the DCA.

B. Categories of Semantic Bugs

We classify semantic bugs that are detected using our
approach, DACITE, into the following two categories:

e Applications-specific bugs (AB) occur when faults are
introduced in the source code of the DCAs, so that they
incorrectly manipulate values of database attributes. For
example, if a programmer writes code for computing
insurance deductible and this computation is applied to
the data object that represents a male who gave birth,
then we assume that this programmer makes a semantic
bug of type AB;

e Data-specific bugs (DB) occur when faults are introduced
in the database. There are two sources for the DB bugs:
incorrect explicit constraints are applied to data or some

constraints are omitted. As a result, using our example
for a male who gives birth, a programmer writes a
conditional check in the application’s source code to
prevent a computation on this object while the database
contains these data objects.

C. Generic Properties

When certain properties hold in DCAs, we consider them
free of semantic bugs. The strongest generic property is
expressed as Vd € D,s.t.(Ca(v — d) = Cp(v — d)) A
(Cp(v = d) = Ca(v — d)), ie., if this theorem can be
instantiated and proved for a given DCA, it is free of semantic
bugs. Unfortunately, it is infeasible to extract all constraints
(especially the ones that are omitted by stakeholders) and find
a proof to this complex theorem. Therefore, we weaken this
property to make DACITE practically applicable.

We formulate a weaker property as a situation where
there exists a single assignment of data to some variables or
attributes where the constraints that are infered from the ap-
plication’s source code are satisfiable while the corresponding
constraints from the database that contain the same attributes
cannot be satisfied and vice versa. That is, finding violations
of this property does not mean that there are actual semantic
bugs in the DCA, but DACITE generates warnings based on
the violations of these constraints that enable stakeholders to
localize and eventually fix these faults.

D. Overview of the Solution

In this paper, we address a three-pronged problem. First,
we reverse engineer implicit constraints that are encoded in
the source code of the applications. Second, we infer implicit
constraints from the data that are stored in the database and
that are used by the DCA. Finally, we instantiate properties
based on the generic property template and determine if these
properties are not violated.

The main goal of our approach is to address an important
practical problem. A sound solution would guarantee that there
are no bugs in the DCA if DACITE finds no violations of the
properties and a complete solution would never mark some
code in DCA as buggy if it is actually free of bugs. In our
case, false positives and false negatives are possible, and our
goal is to find semantic bugs of types AB and DB with a high
degree of precision and recall. At the same time, our goal is
to make this approach useful for developers who need to find
semantic bugs. Although our solution is a recommendation
system, which is neither sound nor complete, we aim to show
a baseline of what can be achieved using only basic analyses.
In section VI-A and VI-B, we show that our solution is able
to detect conflicts from real DCAs and improve developers’
efficiency for detecting implicit conflicts. We believe that our
solution is the first tangible step to address this very difficult
practical problem.

IITI. TLLUSTRATIVE EXAMPLE

In this section, we first declare some important notations
and terms that we will use. Then, we describe how DACITE
works using illustrative examples.

A. Definitions and Notations

To demonstrate how our approach works, we must first
introduce some notations. In the rest of the paper, we will
use teletype font to denote all variables, which include
source code and database variables. For each function f in
the subject application, let ¢; denote the ith statement in f.

For each statement ¢;, it has a pre-condition t;[Pre] and a
post-condition ¢;[Post]. In addition, for a (pre-/post-)condition
¢, c.m denotes a map that links each local variable to its
symbolic expression and c.b denotes the branch path which
is able to reach the current condition ¢ from the beginning
of the function. We use the format {c.m/|c.b} to represent the
condition c. For example, t5[Pre] = {a — Salary-1,000;
b — Age+100; ¢ — Bonus | Age>40 A Sex=1} means
that “The branch path to t5 is Age>40 and Sex=1. Also,
before executing 5, a represents Salary-1,000, b represents
Age+100, and c represents Bonus.”

Furthermore, we annotate the program variables that are
related to database attributes. We define two kinds of annota-
tions - DBSource and DBSink. The annotation DBSource
specifies that a program variable retrieves information from
the database. The annotation DBSink means that a program
variable updates some database cell with its value. In Figure 1,
the variable age is a DBSource, which is assigned the value
of attribute age after an SQL select operation in line 4. The
varS is a DBSink, where its value updates the database by
using SQL update operation in line 17. Since the stakeholders
need to focus only on the statements which connect code with
databases, the effort for annotating such variables is rather
minimal [33]. Alternatively, users can also apply Meurice et
al.’s approach [51] for automatically annotating the database
accesses.

B. Obtaining Constraints from Source Code

Figure 1 presents some code snippet that we will use as an
example. We apply static analyzer to obtain constraints from
the code. The analysis process as well as the details behind
the algorithm are explained in IV-B.

InitSalary (int id) {
int age, isSenior,
. //read Age from DB
Annotation.DBSource ("age"
... //read Senior from

"Age");

Annotation.DBSource ("isSenior", "Sr_Eng");
if (age > 32){
if (isSenior == 1) {
varS = 6500;
Annotation.DBSink ("varS", "Salary");
telse{
varS = 5500;
Annotation.DBSink ("varsS", "Salary");}
telse({
varS = 4000;
Annotation.DBSink (" ", "Salary");}

. //update varS to

Fig. 1. Code snippet from a sample DCA

In the beginning of the function, to, we map each local
variable to itself and set the branch path ¢5[Pre].b to be true.
Therefore, to[Pre] is:

{age—age; varS—varS; isSenior— isSenior; | true}

In line 4, we annotate the variable age and link it to the
database attribute Age. t4[Post]:

{age—Age; varS—varS; isSenior— isSenior; | true}

In line 6, isSenior is linked to Sr_Eng. tg[Post|:

{age—nage; varS—varS; isSenior— Sr_Eng; | true}

As for the if-statement in line 7, the if-branch is taken
if age>32 and else-branch is taken otherwise. Therefore,
the branch path tg[Pre].b should be updated to Age>32 A
true. Similarly, to[Pre].b will be Age>32 A Sr_Eng=1 and
t15[Pre].b will be Age<32. Therefore, t9[Pre]:

{age—Age; varS—varS; isSenior— Sr_Eng; | Age> 32Asr_Eng=1}

Since tg is an assignment, vars is assigned to 6,500. Then,
tg[Post] and t19[Pre] becomes:
{age—+>Age; varS—6,500; isSenior— Sr_Eng; | Age>32ASr_Eng=1}

In line 10, we get the first database sink annotation,
where varsS has been linked to database attribute Salary.
Based on t19[Pre], we are able to generate a constraint:
Age>32 A Sr_Eng=1 — Salary=6,500. By doing this
over all the statements, we are able to extract three con-
straints from this code analysis procedure: C;¢: Age>32 A
Sr_Eng=1 — Salary=6,500; C5°: Age>32 A Sr_Eng#1
— Salary=5,500; C5¢ Age<32 — Salary=4,000. Let
C*¢ denote the set of constraints from the source code and
C:¢ denote the rule j in the set. We will use these constraints
to find the conflicts in the final step (see III-D).

public void doGet (HttpServletRequest request,
HttpServletResponse response)

double result = rs.getDouble (2);

if (result>4) {

p_stat = "Accept
updatestat= e papers set p_stat=" +
p_stat +" where pID="+pid;
telse(
p_stat = "Reject";
updatestat="update papers set p_stat=" +
p_stat +" where pID="+pid;
}
}
Fig. 2. Code snippet from Calculate.java in [5]

Another example from CMT DCA [5] is shown in Figure
2. Because of space limitations we show only partial code
for this function, however, the full source code can be found
online [5]. In line 3, the function reads the second column
(Avg_rating) from table Roles and assigns the value to
result. Therefore, t3[Post] is:

{result—Avg_rating; p_stat—p_stat; | true}

As for the if-statement in line 5, the if-branch is taken if
result>4 and else-branch is taken otherwise:

te[Pre]: {result—Avg_rating; p_stat—p_stat; | Avg_rating>4}
to[Pre]: {result—Avg_rating; p_stat—p_stat; | Avg_rating<4}

Since both tg and ty are assignment statements, we update
the post-conditions to

te[Post]: {result—Avg_rating; p_stat—Accept; | Avg_rating>4}
to[Post]: {result—Avg_rating; p_stat—Reject; | Avg_rating<4}

In line 7 and line 10, the database column Paper .P_stat
is updated with the value of p_stat. Therefore, we are able
to extract two constraints from the code analysis procedure:
Roles.Avg_rating>4 — Paper.P_stat=Accept and
Roles.Avg_rating<4 — Paper.P_stat=Reject.

C. Obtaining Associative Rules from Database

A relational database follows a relational model by Codd
[24] and presents information in tables with rows and columns.
A table is referred to as a relation and it is a collection of ob-
jects of the same type. To obtain semantic dependencies among
data items in the database automatically, we use Associative
Rule Mining(ARM) algorithms. The ARM problem was first
introduced by Agrawal et al. [14]. Given a table, an associative
rule mining algorithm is able to generate a set of implications
X =Y, where X and Y are expressions partially supported
by the records in the table. The next step in DACITE is to
extract constraints from the database by relying on association
rule mining algorithms.

Let us assume that the database is shown in Table I. The
attribute Age demonstrates the age of an employee and the
attribute Sr_Eng indicates whether the person who holds

TABLE I

DATABASE TABLE FROM A SAMPLE DCA
Age Sr_Eng Salary NumHouse
23 4,500 0

5,000
6,000
5,500
6,500
7,000

)|
=
— — o — o g

0| N 1o —| S

the record is a senior engineer or not. Salary indicates the
employee’s monthly salary and NumHouse shows the total
number of houses that the employee possesses.

Next, we define two parameters, supp and conf, that are
used while mining associative rules. Let us assume that X
and Y are attribute sets in a table and Occ(X) is defined as
the occurrence of X in the table. supp of rule X — Y is
equal to Occ(X U Y)/number of records in the table. conf of
rule X — Y is Occ(X UY)/Occ(X). Although the number of
records in a sample database is small, results would be similar
to that one with larger tables, since all ARM parameters (min
supp, min con f, k) are based on ratios of total records. Thus,
if we set the supp to be 0.3 and conf to be 0.5, the number
of support records for attribute values are shown below:

Attribute value Num. Support
{Sr_Eng: 1} 3
{Sr_Eng: 0} 3

{ NumHouse: 0 } 2

{ NumHouse: 2 } 3

Moreover, the associative rules that we can infer are:
{ sr_Eng: 1} = {NumHouse: 2}
{ sr_Eng: 0} = {NumHouse: 0}

However, a real estate agent may want to see relations
between customer age and the number of owned houses. Thus,
they could target customers who are most likely to buy a new
house. In such cases, we want to see if NumHouse is related
to Age or if Salary is related to Age. Since all the values
in Age and Salary are distinct, the support of each value
in those attributes is not high enough to generate associative
rules. Our idea for solving this problem is to transfer the rela-
tional table, which has quantitative and categorical attributes,
into a boolean table. The work by Srikant and Agrawal [69]
refers to Boolean Association Rules as the problem of finding
association between true values in a relational table where all
values are boolean values, whereas they refer to Quantitative
Association Rules as the problem of finding association in a re-
lational table which has quantitative and categorical attributes.
By mapping the quantitative association rules problem into
the boolean association rules problem, Srikant and Agrawal
[69] showed that it is possible to use any boolean association
rules mining algorithms (e.g. [15]) for finding quantitative
association rules.

In order to map the quantitative association rules problem
into the boolean association rules problem, we use the k-
means clustering algorithm [36, 47] to split each quantitative
attribute into k clusters (see IV-C). Then, we map the original
quantitative table into the boolean value table based on the
clusters, which is shown in Table II (k = 2).

TABLE II
BOOLEAN VERSION OF AN ORIGINAL DCA TABLE

Age Age Sr_Eng Salary Salary | House House
[23,29] | [32,50] [4.5k, 5.5K] [6k, 7K] [0, 1] [2, 2]

I 0 0 I 0 I 0

1 0 0 1 0 1 0

1 0 1 0 I 1 0

0 1 0 1 0 0 1

0 I 1 0 I 0 I

0 1 1 0 1 0 1

Given the same min supp=0.3 and con f=0.5, the associative
rules that we can infer now are:

Ri: {age: [32, 50]} = {House: [2, 2]} (conf: 1.0)

Ry: {nge: [32, 50]} A {Sr_Eng} = {House: [2, 2]} (conf: 1.0)

R3: {salary: [4,500, 5,500]} = {House: [0, 1]} (conf: 0.67)

Ry: {nge: [32, 50]} = {Salary: [6.000, 7.000]} (conf: 0.67)

Rs: {age: [32, 50]} A {Sr_Eng} = {Salary: [6,000, 7,000]} (conf: 1.0)

If we reset the min con f to be 0.8, we can only infer rules
1, 2, and 5. Clearly, the number of rules that ARM can infer
depends on the input parameters. We will demonstrate the
influence of choosing different parameter setting on the results
in the experiment evaluation section in VI-C. In the case of
attributes from several tables, the approach works if we join
the tables as one table.

The next step is to transform the associative rules into the
logical constraints. The constraints that can be generated from
the associative rules above are:

C*: 32 < nge < 50 — House = 2 (conf: 1.0)

Cgb: 32 < Age < 50 A Sr_Eng =1 — 32 < House < 2 (conf: 1.0)

Cgb: 4,500 < salary < 5,500 — 0< House < 1 (conf: 0.67)

Cfb: 32 < age < 50 — 6,000 < salary < 7,000 (conf: 0.67)

Cdb: 32 < nge < 50 A Sr_Eng = 1 — 6,000 < Salary < 7,000 (conf: 1.0)

This set of constraints will be used in the step of detecting
conflicts in section ITI-D. Let C% denote the constraint set
and C# denote the rule 7 in the set.

D. Detecting Conflicts

In this section, based on our example, we describe three
scenarios, which include no semantic bugs, type AB semantic
bug, and type DB semantic bug (see 1I-B).

1) No semantic bugs. We check each pair of constraints in
C*¢ and C% (the details are explained in IV-D) and there is
no conflict in the given example.

2) Type AB semantic bug. In Figure 1, assume a developer
mistakenly puts a wrong initial number into the code in line
9, for example “varsS = 5,000;”, a new constraint set inferred
from source code would become C*¢': C5¢: Age>32 A
Sr_Eng=1 — Salary=5,000; (75”/: Age>32 A Sr_Eng#1
— Salary=5,500; C5¢: Age<32 — Salary=4,000.

Same as before, we check each pair of constraints in
Cs¢ and C%. For the constraints Cgb and Cfcl, we
have the left hand side implication as valid, which is
32<Age<50 A Sr_Eng=l = Age>32 A Sr_Eng=l.
However, the right hand side checking is unsatisfied, s-
ince UNSAT(6,000§Sala/ry§7,000 A Salary=5,000). We
record the position of C7¢ in line 9. The conflict and position
will be added to the warnings list.

3) Type DB semantic bug. On the other hand, inserting or
updating data in the database without restrictions may trigger
other types of semantic inconsistencies in the DCA. For Table
I, assume that the last two rows have been modified by another
system, as the following:

Age Sr_Eng Salary NumHouse
40 I 2,500
50 1 2,000 2

In the table, instead of inferring Cd, we would infer 32
< Age <50 A Sr_Eng=1— 2,000 < salary < 2,500,
which is inconsistent with the source code. Besides, it may
lead to an exception being thrown, since senior developer’s
salary should be above that one of an entry developer. Detect-
ing such conflicts before they manifest themselves at runtime
is an essential goal of this work.

IV. OUR SOLUTION

In this section, we present core ideas behind DACITE and
we describe its architecture and the workflow.

A. The Architecture of DACITE

1
Source Codes |—@—4 Static Analyzer%"é)l Constraints @ E

0 o
o Solver Qo |—>|Cunﬂict Report
k, supp, conf
o052
| Database @ I__)l Amcamavcnulcmanc.%l_ﬂ Rules l% i
Fig. 3. DACITE’s architecture.

DACITE contains three main components: a static analyzer
(see IV-B), an associative rule miner (see IV-C), and a solver
(see IV-D). The architecture is shown in Figure 3. The inputs
of DACITE are the annotated source code and its correspond-
ing database (1). In phase 1, the static analyzer accepts the
source code and performs dataflow analysis. The output is a
set of constraints in the format of A — B, where both A and
B are expressions (2). In phase 2, for the associative rule
miner, the inputs include the database and parameter values
specified by stakeholders. The outputs are associative rules
inferred by the ARM algorithm. Like the constraints produced
by the analyzer, the associative rules are also in the format of
A — B (3). Once DACITE collects the constraints from both
source code and databases, it passes the constraint pairs into
a solver and checks the consistency between the source code
and the database (4) . Finally, DACITE records each conflict
and generates the final report (5) .

B. Dataflow Analysis

We perform an intra-procedural dataflow analysis to extract
constraints from the source code. Our implementation is based
on Soot [11]. By using control flow graphs (C'F'Gs), our
dataflow analysis is able to obtain information about the
possible set of variable values at each point in the subjec-
t function. For each statement ¢; in sequential statements
{tot1ta...t,} of a function, we maintain two conditions,
t;[Pre] and t;[Post]. Each condition maps variables to sym-
bolic expressions along with a path condition to the condition.
t;[Pre] denotes the pre-condition of ¢; and t;[Post] denotes
the post-condition of ¢;. For a statement set 7', we use T'[Post]
to denote post-condition set of 7. The classic dataflow analysis
also defines transfer function TRANS for the statement ¢; and
meet operation JOINp for a statement set P, where P are
predecessors for the statement ¢; [40]:

t;[Post] = TRANS(t;, t;[Pre])
t;j[Pre] = JOINp(P[Post])

In the initial condition of a function, ¢y[Pre], we map each
local variable to itself and set the branch path to be true.

For the transfer function, the input includes a statement
and its pre-condition. The output is the post-condition of the
statement. We precisely process several basic statements in the
subject language: ASSIGNMENT, BINOP, UNOP, DBSOURCE,
DBSINK, etc. ASSIGNMENT, v < e, assigns the expression
e to the variable v. BINOP, v = a o b, computes a o b where
o € {+,—,%,/} and assigns it to v. UNOP v = ¢ a is an
uni-operation where ¢ € {++,——,—,!}. DBSOURCE and
DBSINK (v « att, v — att) are DACITE annotations from a
user, which link database attributes to variables.

For the meet function, we compute over-approximation.
The input is a set of prior conditions and the output is the
combination state for the state set. For the state condition of
the output, we compute the union of all prior state conditions.
We compute the over-approximation for each variable. We

assign the variable to itself if it has different assignments in
different branches and keep the assignment otherwise.

C. Associative Rule Mining

ARM involves four main steps in our approach.

The first step is to import data from the database and
classify the attributes into quantitative attributes and categor-
ical attributes. We classify numerical type attributes with a
value more than ten as quantitative attributes. For string type
attributes and numerical type attributes with number of distinct
value less than ten, we classify those as categorical attributes
(based on the size of databases, numerical type attributes that
contain distinct values less than ten will have a large amount
of records to support an individual value; therefore, we do not
have to generate intervals.).

In the second step, we map the original table into a table
where all the values are boolean. We have explained the reason
for the table mapping in Section III-C. In our approach, we
use the k-means algorithm [36, 47] to split each quantitative
attribute into k intervals, where k is specified by users. We
represent each quantitative value in the original table as one
if the value is in the range of the splitting attribute and zero
if it is not. For categorical attributes, we use each value as a
new attribute in the new table. We assign one if the value is
present for a given row, or zero otherwise.

In the third step, we apply the FP-growth algorithm [35]
to generate associative rules. FP-growth is a pattern growth
method for efficient mining of frequent patterns in large
databases. Two parameters, supp and conf, are provided by
a stakeholder.

In the fourth step, we map the previous associative rules
to constraints that we can use in the solver. For an interval
attribute A, let A.min and A.max denote the lower and
upper bound of the interval range (A.min is equal to A.max
if A denotes a specific numerical value in the original ta-
ble). For each associative rule A = B where A and B
are interval quantitative attributes, we map A (resp. B) to
Amin<A <Amazx if Amin#ZAmax and to A=A.min
(resp. B) if A.min=A.mazx. For example, assume A denotes
the age between 40 to 50 and B denotes the numOfCar
(the number of car) is 2, A = B would map to constraint
40<age<50= NumOfCar=2.

D. Detecting Conflicts

We use a Choco-based [4] constraint solver for detect-
ing conflicts between the constraints from the code and the
database. Let C (resp. Cy) denote the constraint set which
is inferred from the source code (resp. database). Also, let ¢
denote a constraint from C, or Cy. Since all the constraints
from Cy and Cy are implications (see IV-B and IV-C), c is an
implication constraint and is in the format of “A = B”. To
explain our algorithm, we use c.left to denote the left hand
side of the implication ¢ and use c.right to denote the right
hand side of it. Due to the limitation of the solver that we use,
we only consider linear integer expressions.

We check the unsatisfiability of c;.right A c;.right only if
ci-left = c;.left and record the position if ¢;.le ft = c;.left
but c;.right Ac;.right is unsatisfied. DACITE could also help
the user trace back the source code location for the conflict
since the location of Cy has been recorded. Thus, developers
could identify the conflict location in the code based on the
final report.

E. Implementation

We implemented all the components of DACITE in Java.
For the static analyzer component (see IV-B), we implemented
it relying on Soot-based analysis [11]. Soot is a Java optimiza-
tion framework, which provides intermediate representation
for static analysis. For the associative rule mining component,
we implemented the technique that we presented in IV-C.
Since ARM is a time-consuming algorithm, we opted to limit
the size of records in the experimental database to 100K. Each
component, static analysis and associative rule mining, outputs
a group of constraints that are inferred respectively. JPF [8]
implemented data structures for expressions that are used in
symbolic execution engine. We rely on JPF’s implementation
for expression representation. We also implemented our own
solver (see IV-D) based on Choco [4], which allows DACITE
detect the inconsistencies between the source code and the
databases.

V. EXPERIMENTAL DESIGN

In this section, we first define three research questions
(V-A). Then, we discuss subject applications (V-B) and exper-
imental variables (V-C). Finally, we present our experimental
methodologies (V-D).

We conducted several experimental studies to evaluate
DACITE. 7) We used DACITE to detect semantic violations in
real subject applications. 7¢) We conducted a user case study
to compare developers’ time consumption and accuracy in
detecting semantic bugs in the DCAs with and without using
partial outputs from DACITE. The goal of the study was to
evaluate if DACITE can be effectively used by developers for
detecting semantic bugs. ¢7) We introduced more conflicts into
the subjects. The goal of the study was to evaluate DACITE
in a controlled setting to study how effective it is in extracting
implicit constraints from the code and databases.

A. Research Questions

RQ; Is DACITE able to detect conflicts from real DCAs
if a database contains semantic violations?

RQ:; How well can DACITE improve developers’ accu-
racy for detecting implicit conflicts (between source
code and its corresponding database) as compared to
the manual approach?

How is DACITE’s performance on detecting seman-
tic violations by varying conf and supp in ARM?

In RQq, we examine if DACITE can extract implicit con-
straints from the source code and databases in open-source D-
CAs. By assuming existence of interoperating systems, which
may have authority to manipulate the database, we insert the
data in the database containing DB type semantic bugs (see
II-B) and check if DACITE is able to detect these violations.
Such semantic bugs are representative of those that can trigger
faults in the application [30, 79, 81].

With RQ,, we conducted a user case study to test if
DACITE can help developers detect semantic violations. In
order to do this, we compared developers’ time consumption
and accuracy in detecting semantic bugs in the DCAs with and
without using DACITE. We explain our methodology behind
these studies in details in V-D.

With RQj3, we try to measure two types of metrics: conflict
recall (RC) and probability of false alarms (PF). We use TP to
denote true positives, where the conflicts reported by DACITE
are indeed actual conflicts. For the FP, false positives, we keep

RQ3

TABLE III
DCA STATS: SIZE OF CODEBASES (APP), SIZE OF DATABASES (DB),
NUMBER OF TABLES (TBL) AND ATTRIBUTES (ATTR).

DCA App DB Tbl Attr
UMAS 26.9kLOC 178KB 122 427
Potholes 11.5kLOC 1.2GB 19 87
Durbodax 14.2kLOC 25MB 28 121
Broker 16.5kLOC 1.78MB 14 46
Verse 5.3kLOC 4.27MB 15 165
A2S 2.5kLOC n/a n/a n/a
BGPProgram 2.9kLOC n/a n/a n/a
CMT 2.7kLOC n/a 5 31

track of the rules from the source code that have no conflicts
with the database, but DACITE still reports them. In addition,
we use FN to denote false negative and TN to denote true
negative. Then, we have more specific definitions for RC and
PF, where RC = TP / (TP + FN) and PF = FP / (FP + TN).
RC measures the ratio of conflicts detected in the application
(out of all the injected conflicts, see V-D). The higher the
RC, the more conflicts are detected in the DCA. We desire
higher RC and the highest possible value of RC is 100%. PF
measures the ratio of alarms that are reported by DACITE
and are not actual conflicts. Therefore, lower PF values are
more practical to be actually useful for developers. We did
not use other measures such as accuracy and precision, since
the metrics are not suitable for the data where target class
is rare (the target are the conflicts in our case) [50, 61]. In
addition, we examine the influence of associative rule mining
configuration on the results, since the rules inferred by static
analysis will not change once the code is fixed, and the rules
inferred from the database by associative rule mining can
vary depending on different parameters. We address our claim
that we are able to get a lower rate of false positives with
higher support/confidence configuration for the associative
rule mining. However, higher support implies lower recall for
detecting conflicts, which means that we may sacrifice recall
to get the implicit conflicts with higher certainty. Furthermore,
We evaluate the performance of DACITE on five open-source
DCAs. By evaluating the applications and databases of dif-
ferent sizes, our goal is to show that our technique is suitable
and applicable for real-world DCAs. In Section VI, we present
the time and space consumption over different stages of our
technique.

B. Subject Applications

We evaluate DACITE on eight open source applications that
belong to different domains. Those subject applications are:
1) UMAS [12] is a course management system; 2) Potholes
[10] is a movie rental system; 3) DurboDax [7] is a customer
support center software; 4) Broker [3] is an application
for suggesting an auto-insurance; 5) Verse [13] is a game
application. 6) A2S [1] is a supermarket management system;
7) BGPProgram [2] is a flight booking system. 8) CMT [5]
is a submission rating system.

Table III contains characteristics of the subject applications
and their databases. The first column shows the names of
the DCAs, followed by various stats. The code of the DCAs
ranges from 2.5kL.OC to 27kLOC. In addition, the size of the
databases ranges from 178KB to 1.2GB. The total number of
tables in each database ranges between 5 to 122.

C. Independent and Dependent Variables

There are two independent variables for associative rule
mining, support supp and confidence conf. We also have an
independent variable k for k-means clustering. In addition,
we have three independent variables for the code injection. To

answer RQg, the number of injected code snippets are 18 for
each application. Among those, we have nine valid snippets
(no semantic bugs) for computing PF and nine snippets con-
taining conflicts for computing RC (see V-D). Furthermore, we
have three dependent variables including conflict recall (RC),
probability of false alarms (PF), and execution time (ET). We
experiment with DCAs by varying the independent variables
for associative rule mining.

D. Methodology

To answer RQ;, we mock external systems to introduce
type DB semantic bugs (see III-D) in the database and see if
DACITE is able to catch the violations. For data generation,
we use an online mock data generator, namely Mockaroo [9].
By specifying the attribute names and types, Mockaroo can
generate test data including that one with advanced formu-
las for the attributes. The attribute relations could include
mathematic operations and condition statements. Using this
feature, we are able to mock data with known constraints
for three systems in Table IIl. In addition, to simulate the
real world scenario, we also randomly modified and inserted
small amounts of data to introduce noise in the databases. The
generated data will be used in our experiments.

To answer RQ,, we conducted a user study with six grad-
uate students from authors’ institution. Based on the gathered
background information, the average programming experience
in Java was six years and the average experience working with
DCAs was four years.

To prepare the study, we selected four subject applications
from Table III, which are Durbodax, Broker, UMAS, and
Potholes. Based on the controlled subjects in RQs, we
reduced the number of both consistent and conflicting snippets
to three since we had to design the study so that it can
be completed in a reasonable amount of time. We recorded
the snippets’ locations as the ground truth and used it while
analyzing the results. During the experiment, each participant
had to finish four tasks in total. The four subject applications
were randomly assigned to the tasks with a given sequence.
Based on the sequence, we partitioned the tasks into two
categories:

i) For the tasks 1 and 3 (category 1), we provided the
source code and the database of a DCA to each participant.
Without telling them any other information, the participants
were required to locate likely semantic conflicts between the
code and database. This setup simulates real scenario of how
developers detect semantic bugs in practice (see II-B).

i) For the tasks 2 and 4 (category 2), we provided not only
the source code and database of a DCA, but also DACITE’s
output constraints for a given system. Same as before, the
participants were told to locate the semantic conflicts between
the source code and database. This reflects a scenario where
developers need to detect semantic bugs using output con-
straints from DACITE.

TABLE IV
THE TASK/DCA ASSIGNMENT FOR A PAIR OF PARTICIPANTS, p AND p’.
a, b, c,d ARE RANDOMLY ASSIGNED.

participant Category # Task # | DCA

category | task 1 a

p (without DACITE) task 3 b
category 2 task 2 c

(with DACITE) task 4 d

category | task T c

' (without DACITE) task 3 d
category 2 task 2 a

(with DACITE) task 4 [

In addition, we paired every two participants as the fol-
lowing. For a participant p, we had a counterpart participant
p’ who will be assigned applications in category 1 for p as
category 2, and vice versa. This is necessary to reduce possible
noise due to differences in participants’ skills. That is, if we
have a participant who is good at finding conflicts, the effect
will be noticeable in both categories. The design matrix for this
study is shown in Table IV. For each task, we measured the
time for each participant to finish the task and the correctness
of the answers.

In order to fully answer RQgs, we have to have ground
truth for all the violations in every single application. Since
it would be extremely time-consuming to build such bench-
marks manually since they do not exist in the literature [53]
(and finding DCAs that contain a sizable number of native
semantic bugs is rather challenging), we decided to inject some
representative code snippets with and without semantic bugs
into our subject DCAs. The goal was to examine if DACITE is
able to detect these inconsistencies while ignoring the snippets
that are consistent with the database. The injection ratio covers
from 2.8% to 11.6% code statements. As we explained, we
measure PF and RC based on the ground truth that we injected.
For each DCA, we have nine injections which have violations
and we check if DACITE is able to detect them to compute
RC. We also injected nine code snippets, which are consistent
with the DCA’s databases. As we explained in Section V-A,
we need this information in order to compute the PF and see
if DACITE stays silent when it should (i.e., does not generate
false alarms for consistent code statements).

We carried out the experiments using Intel Core 17-4700MQ
CPU2.4GHZ with 16GB RAM. We computed RC, PF, and
running time for the DCAs by varying the values of inde-
pendent variables. We varied supp [0.01, 0.3] with the step
of 0.01 and conf [0.6, 0.9] with the step of 0.1. Also, we
tested different k by providing the values of 4, 10, and 40.
The related results are presented in VI-C.

VI. EXPERIMENTAL RESULTS

In this section, we summarize the results of the experiments
conducted to address RQs in VI-A - VI-C. The threats to
validity are outlined in VI-D.

A. Detecting Real Semantic Bugs (RQ1)

We ran DACITE on three subject applications [1, 2, 5] and
detected semantic bugs. Due to space limitations we provide
only three examples of real semantic bugs that DACITE detect-
ed in these open-source DCAs. The goal here is to show that
real-world DCAs indeed contain implicit constraints and these
constraints may not be consistent with the data in the database,
which may not necessarily be obvious from the database
schema. Thus, it is important to rely on approaches, such as
DACITE, for detecting these implicit semantic constraints or
even semantic bugs. Also, the constraints derived from the
source code could also be used to improve database schemas.

For the Java file Sales_Add.java in the project A2S, the
function updateStock () updates the attribute units in
the table of product_type to noOfStock-noOfItem,
where noOfStock is the attribute bottomlevel in the
table product_type. Using DACITE, we are able to obtain
the constraint true — units = bottomlevel-noOfItem.
In other words, if we run the function, the data in the database
has to follow units = bottomlevel-noOfItem in any
situation, since the left hand side of the implication is true.

TABLE V
RESULTS OF THE USER STUDY. * EACH TASK IS LIMITED TO 20 MINUTES.

Category Application Recallcons Precisioncons F — scorecons Recall;y, Precisionn, F — score;y, Time(m)*
UMAS 0.22 0.50 0.30 0.44 0.33 0.36 20
without | Durbodax 0.56 0.56 0.56 0.56 0.67 0.60 20
DACITE Broker 0.67 T.00 0.74 0.89 0.76 0.81 153
Potholes 0 0 0 0.67 0.53 0.57 20
UMAS 0.56 1.00 0.67 0.78 0.67 0.71 17.0
with Durbodax 0.44 0.58 0.45 0.89 0.70 0.74 9.6
DACITE Broker 1.00 1.00 1.00 0.89 092 0.90 13.7
Potholes 0.33 0.50 0.40 0.89 0.58 0.70 13.0

DACITE was able to detect the violation if the database
contained inconsistent records.

For the Java file Travel.java in the project BGPProgram,
the function insertTravel () updates the FreeSeats
to numberOfRows X numberOfColumns, where
FreeSeats is an attribute for table Travel and
numberOfRows, numberOfColumns are coming from
table AirPlaneTypes. In a real world scenario, the initial
free seats would be the number of rows times the number
of columns for a certain type of plane. If the database does
not follow the rule, the system might sell more seats than
the plane can take or might sell fewer seats, which would
decrease profit for the airline. DACITE was able to detect the
constraint and included the constraint to its report. Differently
to the previous example in A2 S, we did not put the constraint
to solver since this constraint is non-linear. In such cases,
we only report the constraints. As what we will show in the
user study, such a report can also help developers locating
the potential bugs.

For project CMT, we extracted two constraints from the
function of Calculate.doGet () and reported conflicts
when the database we used contains inconsistent data. The
constraints include result > 4 — p_stat = “Accept’
and result < 4 — p_stat = “Reject”, where result
is an attribute avg_rating for table roles and p_stat
is an attribute p_stat for table papers. Although the solver
cannot deal with strings, we can interpret strings as 0/1 values
or numerical values. The constraints from the code indicate
that the system accepts the paper if average rating is greater
than 4, and rejects otherwise. A database without data-specific
semantic bugs should be consistent with the code’s logic.

B. Developer-based Evaluation (RQ2)

For the user study, we are tracking four kinds of experi-
mental results: ¢) logical constraints from code that a partic-
ipant identifies as truly consistent/inconsistent with database
(T'P,ons!/TP;y,); 1) logical constraints from code that a par-
ticipant identifies as not truly consistent/inconsistent with
database (F'P,ons/F Piy,); iti) logical constraints from code
that a participant misses as truly consistent/inconsistent with
database (F'N.ons/F N;p); tv) logical constraints from code
that a participant misses as not truly consistent/inconsistent
with database (T'N,ons/T' N;iy). We evaluate our results using
three metrics, Recall, Precision, and F' — score. We record
values of the metrics for each individual task. The definition
of the metrics are as the following: Recall, = TP, /(T P, +
FN,), Precision, = TPy/(TP, + FP,), and F — score,
= (2 x Recall, x Precision,) !/ (Recall, + Precision,,),
where o € {cons/in}. Recall indicates the completeness of
the results. Precision indicates how accurate the result is.
F — score is a combined metric which considers both the
Precision and Recall factors to measure the effectiveness. In
our user study, we weight precision and recall equally [73, 74].

The average performance of each type of task in our user

study is shown in Table V. In the category of “w/o DACITE”,
the average value of F'— Score for consistency (resp. inconsis-
tency) is 0.4 (resp. 0.59). However, in the category of “using
DACITE”, the average value of F' — Score for consistency
(resp. inconsistency) is 0.63 (resp. 0.76), which is greater
than the previous one. The results indicate that the output
information from DACITE indeed improves the accuracy of
detecting semantic bugs (RQs).

In terms of time consumption, the average time consumption
“w/o DACITE” is 18.8 minutes while the average time con-
sumption when “using DACITE” is 13.3 minutes. We claim
that DACITE is able to reduce the time consumption for
developers finding the implicit conflicts between source code
and its corresponding database.

We also asked participants to fill out a survey upon com-
pleting a user study. The questions aimed at establishing
the importance of semantic bugs finding and helpfulness of
DACITE. These are some representative comments:

o “The db design violations arise in runtime when inputs
or program states violating the constraints appear in the
execution. In summary, yes, DACITE is helpful, and is
very important as a tool for early bug detection”;

o “The intermediate information provided by DACITE was
useful, particularly the locations of the sc constraints”;

« “Inconsistencies between source code and database are
usually very dangerous. They should be detected and
resolved as soon as possible. I think DACITE does a
good job in this sense”.

C. DACITE’s Performance (RQ3)

To answer the RQ3, we ran DACITE on several different
DCAs with injected (in)consistent code snippets. The impact
of the support count and confidence values on the RC and PF
for the Potholes system (with & = 4, conf = 0.6 and 0.9)
is shown in Figure 4.

PF(Conf=0.)
4 PF(Cont = 0.9)
= RC(Cont = 0.6)

RC(Conf = 0.9)

Fig. 4. Impact of support count and confidence (k=4, conf = 0.6 and 0.9)
on RC and PF in Potholes

The values for both RC and PF decrease with higher support
values, which means that lower support values make DACITE
infer more rule awhile using ARM and sacrifice precision.

(a) UMAS (b) Durbodax

Fig. 5.

=s=Phase 1(s)

= =Phase 2(s)

=@-Phase 3(s)
0.05

=#=Phase 1(s)
= =Phase 2(s)
=@-Phase 3(s)

(a) UMAS (b) Durbodax

Fig. 6.
However, RC still remains higher than PF. In the figure, RC
is around 0.5 while PF drops to 0 at supp = 0.2 and conf
= 0.6. Comparing the confidence values of 0.6 and 0.9, we
found that using higher con f results in lower RC and PF.

In order to understand volatility in the results, we investi-
gated the results closer and concluded that the main reason
for these non-deterministic results was in the associative rule
mining. For example, a specific rule mining procedure returned
two rules for the database, ry: 32<age<39 — NumHouse=3
and r1: 20<age<29— NumHouse = 1. 7y is inconsisten-
t with the constraint (inferred from the code snippet) co:
30<age<39— NumHouse=1. However, without changing any
independent variables, the associative rule mining procedure
may return different rules r{: 27<age<39— NumHouse=3
and 7: 20<age<23— NumHouse = 1. Since the left hand
side of r{, does not imply the left hand side of ¢y, we cannot
claim existence of the conflict in the code snippet.

We demonstrate the impact of configuration settings on RC
and PF for four other subject DCAs in Figure 5. The downward
trends are similar to Figure 4. In Figure 5(a), RC is around
0.6 at supp = 0.2. However, the values drop rapidly after we
increase the supp greater than 0.2. Our explanation is that,
for UMAS, most of the constraints from the source code are
supported by one fifth of the records in the database. Generally,
RC remains in high values and PF remains relatively in low
values for all subject DCAs. The result shows that DACITE, as
a warning system for revealing inconsistencies between code
and database, could provide useful suggestions to developers.

We also recorded execution time for all analysis stages
in DACITE. Phase 1 (step (2) in Figure 3) used program
analysis to extract constraints from the source code. In Phase 2
(step (3) in Figure 3) associative rule mining was run against
the database. Phase 3 (steps (4) and (5) in Figure 3) used
the solver to find conflicts based on the constraints from the
previous steps. Figure 6 shows the execution time for four

Saport support

(c) Broker (d) verse

Impact of support count and confidence (k=4, conf = 0.6, 0.9) on RC and PF for other DCAs

0.02 —=Phase 1(s)
0.2800000 0.03 = =Phase 2(s)
004 —@-Phase 3(s) 027
0.05 0.26

=s=Phase 1(s)
y = =Phase 2(s)

0.04 ~@-Phase 3(s)
005

(d) Verse

(c) Broker

Execution time (in sec) over different support values (k = 4, conf = 0.6).

of subject applications over different support values when we
set the independent variable k = 4, conf = 0.6. We show the
running time of Potholes in the online appendix. The time
values in the figures are depicted using a logarithmic scale.

The time consumption for phase 1 is stable in all the figures,
since the independent variables do not influence the program
analysis step. In contrast, the time consumption for phases 2
and 3 drops significantly with increased supp, because fewer
rules were generated from databases. We observed that phase 3
consumes most of the total time when supp is low and the time
consumption drops dramatically if we infer fewer rules from
the database. That means we can minimize the total running
time by implementing a more efficient solver or improving our
conflict checking strategy.

Due to the space limitation, we do not show the results
of k=10 and k=40 in this paper. All the data is available in
our online appendix [6]. Generally, for higher values of k, we
observe decrease in running time.

D. Threats to Validity

Although DACITE is able to work on larger applications,
we eliminated the tables with records greater than 100K
(again, we did this only for the sake of reducing running
time in our experiments; however, in reality, DACITE can
be applied to larger databases). We observed the trade-off
between the running time for associative rule mining algorithm
and the number of useful rules that can be gleaned from the
tables. For example, we have a table named “movies_info”
in Potholes. The table contains millions of records (the
table stores descriptions for all the movies ever created), but
only has three columns: the id, the description type, and the
description. In the case of such table, there are no useful rules
that can be derived based on such attributes. While this does
not necessarily represent a threat to validity of our results,
this does show that developers should be more involved while
providing an input to DACITE (e.g., by excluding meaningless

tables) to increase the number of useful rules and decrease the
total running time of the approach.

The other threat to validity is that we needed to inject the
code into subject DCAs in order to answer RQs. The reason
for relying on these injections is that the ground truth is,
unfortunately, not available. Thus, we injected both consistent
and inconsistent code snippets into the DCAs and then com-
puted RC and PF metrics. In order to minimize this threat,
we also examined other DCAs in public repositories(RQ;)
and detected real semantic bugs using DACITE. By doing
so, we are able to locate the source code written by original
developers that has interesting constraints that may be in
conflict with the databases.

In this paper, the solver that we implemented is based
on Presburger arithmetic. Therefore, we mainly focus on the
linear integer constraints. We are currently not able to deal
with constraints involving strings and arrays. Since our main
contribution is in finding the implicit constraints between the
source code and the database, building a richer logical solver
is out of scope for this research paper. We believe that our
solution is the first tangible step to address this very difficult
to solve problem.

We implemented our source code analysis technique in
DACITE based on intra-procedural analysis, which means that
all the constraints from the source code come from individual
functions. However, DACITE can be extended to also use
inter-procedural analysis in the following ways: %) using an-
notations (we allow user annotation to link the variables with
database attributes, users can annotate variables if the variable
is assigned by a function which returns a database value);
i1) code embedding (we can also embed function code into
the function caller; we should be able to tame complexity by
limiting the embedding level).

VII. RELATED WORK

Our work is motivated by the studies of co-evolution of
source codes and databases in DCAs. The work by Qiu et al.
[62] presents a comprehensive co-evolution empirical study of
the database schemas and source code. The paper shows that
schema changes induce significant modifications in code. In
our case, the changes might also be the data itself, since we
focus on the implicit rules among the relations between the
value of the data. The work by Maule et al. [49] uses static
analysis method to identify the impact of the database schema
upon object-oriented application. Dataflow analysis has been
used for extracting the database interactions that DCA can
make, which includes all possible insertions, updates, and
stored procedure executions. They use the generated informa-
tion to predict the effects for database schema changes. In our
work, we focus on the variables’ symbolic expressions and
the holding conditions for the expression. By doing that, we
extract the database attributes’ relations in the code.

A different direction is to use type systems to check if
database integrity is not violated [17, 18]. Contrary to using
type systems, DACITE does not require programmers to adopt
different type systems to express constraints; moreover, with
DACITE, constraints can be re-engineered from the data using
ARM. It is a subject of future work to combine refinement
types with DACITE.

Other papers either focus on only database schemas or only
source code aspects. Sjgberg [68] presented a technique for
measuring the evolution of database schemas. Hainaut et al.

10

[34] proposed a method to make explicit constraints present in
legacy Cobol programs when migrating them to more modern
data solutions such as relational databases. A related different
approach has been proposed by Marcozzi et al. [48]. Meurice
et al. [51] presented an approach to analyze the relations
between source code and database schema. However, our work
adds additional interest in its focus on database code and data
inconsistencies.

Some papers [29, 37, 66] are related to the problem of
protecting security between interoperating systems, where an
attacker can manipulate one of the systems. One system
(e.g., web application) may cause unauthorized operations on
the other system (e.g., database). Huang et al. [37] describe
the vulnerability and present a lattice-based static analysis
approach to ensuring web application security. Fan et al. [29]
introduce a new approach for conflict resolution in databases.
However, the focus of DACITE is to identify semantic bugs
that are introduced by interoperating systems or semantic
conflicts between source code and corresponding databases.

Goeminne et al. [32] performed an empirical study on
database co-evolution based on a subject application OSCAR.
The authors observed that new database techniques migrate
from HIB to JPA gradually while embedded SQL still remains
heavily used. In addition, they claim that the majority of
developers are active in both database-related and database-
unrelated files. There are no specializations of developers to-
wards only database-related activities. Their work only focuses
on information from source code files, but do not explore any
information from the database schemas or data in the database.

Linares-Vasquez et al. [45, 46] presented DBScribe, a novel
approach for automatically generating natural language docu-
mentation at source code method level that describe database
usages for a given DCA. However, their approach did not
consider semantic relations between data in the database.

In summary, related papers addressed the co-evolution be-
tween source code and database. Yet, there are no existing
solutions to an important problem of detecting semantic bugs.
Hence, our work is entirely novel and aims at automatically
revealing implicit violations between the data in databases and
the source code in DCAs.

VIII. CONCLUSION

In this paper, we propose a novel recommendation system
that enables stakeholders to automatically obtain constraints
that semantically relate code to database attributes using a
combination of static analysis of the source code of DCAs
and associative rule mining of the databases. The main goal
of our approach is to address an important practical problem:
automatically detecting potential integrity violations in DCAs.
We implemented the approach, namely DACITE, and evaluat-
ed it on eight open source DCAs. The results demonstrate that
DACITE is effective and efficient in finding certain classes of
integrity violations. We also conducted a study with developers
who used DACITE for detecting semantic bugs. The results
and feedback clearly emphasize that the warnings produced
by DACITE are useful and enable developers to find semantic
bugs faster. To the best of our knowledge, there is no previous
work that focused on revealing implicit violations between
the data in databases and the source code in DCAs. Thus, our
technique fills an important gap in the state of research and
practice of developing and maintaining DCAs.

REFERENCES

[1] “A2s. https://github.com/brunthal991/A2S.”

[2] “Bgpprogram. https://github.com/MathiasLoewe/
BGPProgram.”

“Broker. https://github.com/fr4nkfurt/Broker.”

“Choco. http://www.emn.fr/z-info/choco-solver/.”

“Cmt. https://github.com/Sakibs/CMT_src.”

“Dacite online appendix. https:/sites.google.com/site/
daciteonlineappendix/.”

“Durbodax. http://se547-durbodax.svn.sourceforge.net.”
“Java pathfinder. http://babelfish.arc.nasa.gov/trac/jpt/
wiki.”

“Mockaroo. https://www.mockaroo.com/.”

(3]
(4]
(5]
(6]

(7]
(8]

(9]

[10] “Potholes. https://github.com/cszhangshen/Potholes.git.”
[11] “Soot. http://www.sable.mcgill.ca/soot/.”
[12] “Umas. https://github.com/

University-Management- And-Scheduling.”

“Verse. https://github.com/gittekat/verse.”

R. Agrawal, T. Imielinski, and A. Swami, “Mining asso-

ciation rules between sets of items in large databases,’

in SIGMOD’93, pp. 207-216.

[15] R. Agrawal, R. Srikant et al., “Fast algorithms for mining
association rules,” in VLDB’94, pp. 487-499.

[16] K. Bakshi, “Considerations for big data: Architecture and

approach,” in Aerospace Conference, 2012 IEEE. 1EEE,

2012, pp. 1-7.

I. G. Baltopoulos, J. Borgstrom, and A. D. Gordon,

“Maintaining database integrity with refinement types,’

ser. ECOOP’11, pp. 484-509.

V. Benzaken and A. Doucet, “Thémis: A database pro-

gramming language handling integrity constraints,” VLD-

B’95, pp. 493-517.

T. F. Bissyandé, F. Thung, S. Wang, D. Lo, L. Jiang, and

L. Reveillere, “Empirical evaluation of bug linking,” in

Software Maintenance and Reengineering (CSMR), 2013

17th European Conference on. 1EEE, 2013, pp. 89-98.

[20] 1. Boci¢ and T. Bultan, “Data model bugs,” in NASA
Formal Methods. Springer, 2015, pp. 393-399.

[21] A. Cheung, O. Arden, S. Madden, A. Solar-Lezama, and
A. C. Myers, “Statusquo: Making familiar abstractions
perform using program analysis.” in CIDR. Citeseer,
2013.

[22] A. Cleve, “Program analysis and transformation for data-
intensive system evolution,” in /ICSM’10, pp. 1-6.

[23] A. Cleve, N. Noughi, and J.-L. Hainaut, “Dynamic

program analysis for database reverse engineering,” in

Generative and Transformational Techniques in Software

Engineering IV. Springer, 2013, pp. 297-321.

E. F. Codd, “A relational model of data for large shared

data banks,” Communications of the ACM, vol. 13, no. 6,

pp. 377-387, 1970.

B. Curtis, H. Krasner, and N. Iscoe, “A field study of the

software design process for large systems.” Commun., pp.

1268-1287, 1988.

[26] G. Denaro and M. Pezze, “An empirical evaluation of
fault-proneness models,” ser. ICSE’02, pp. 241-251.

[27] A. Deutsch, R. Hull, and V. Vianu, “Automatic ver-
ification of database-centric systems,” ACM SIGMOD
Record, vol. 43, no. 3, pp. 5-17, 2014.

[28] M. Emmi, R. Majumdar, and K. Sen, “Dynamic test input
generation for database applications,” in Proceedings of

[13]
[14]

[17]

[18]

[19]

[24]

[25]

11

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

the 2007 international symposium on Software testing
and analysis. ACM, 2007, pp. 151-162.

W. Fan, F. Geerts, N. Tang, and W. Yu, “Conflict res-
olution with data currency and consistency,” Journal of
Data and Information Quality (JDIQ), vol. 5, no. 1-2,
p. 6, 2014.

P. Fonseca, C. Li, and R. Rodrigues, “Finding complex
concurrency bugs in large multi-threaded applications,”
in Proceedings of the sixth conference on Computer
systems. ACM, 2011, pp. 215-228.

P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed
automated random testing,” in ACM Sigplan Notices.
ACM, 2005, pp. 213-223.

M. Goeminne, A. Decan, and T. Mens, “Co-evolving
code-related and database-related changes in a data-
intensive software system,” in CSMR-WCRE’14, pp.
353-357.

M. Grechanik, C. Csallner, C. Fu, and Q. Xie, “Is data
privacy always good for software testing?”” in ISSRE’ 10,
pp- 368-377.

J.-L. Hainaut, A. Cleve, J. Henrard, and J.-M. Hick,
“Migration of legacy information systems,” in Software
Evolution. Springer, 2008, pp. 105-138.

J. Han, J. Pei, and Y. Yin, “Mining frequent patterns
without candidate generation,” in ACM SIGMOD Record.
ACM, 2000, pp. 1-12.

J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-
means clustering algorithm,” Applied statistics, pp. 100—
108, 1979.

Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and
S.-Y. Kuo, “Securing web application code by static anal-
ysis and runtime protection,” in Proceedings of the 13th
international conference on World Wide Web. ACM,
2004, pp. 40-52.

S. Joshi and A. Lal, “Automatically finding atomic re-
gions for fixing bugs in concurrent programs,” CoRR,
vol. abs/1403.1749, 2014.

A. Katal, M. Wazid, and R. Goudar, “Big data: Issues,
challenges, tools and good practices,” in Contemporary
Computing (IC3), 2013 Sixth International Conference
on. 1EEE, 2013, pp. 404—-409.

G. A. Kildall, “A unified approach to global program
optimization,” in POPL’73. ACM, 1973, pp. 194-206.
D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should we
fix this bug? a two-phase recommendation model,” IEEE
transactions on software Engineering, vol. 39, no. 11,
pp- 1597-1610, 2013.

T. Kindberg and A. Fox, “System software for ubiquitous
computing,” IEEE pervasive computing, vol. 1, no. 1, pp.
70-81, 2002.

C. Le Goues and W. Weimer, “Specification mining with
few false positives.” in Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2009,
pp- 292-306.

B. Li, M. Grechanik, and D. Poshyvanyk, “Sanitizing
and minimizing databases for software application test
outsourcing,” in ICST 14, pp. 233-242.

M. Linares-Vasquez, B. Li, C. Vendome, and D. Poshy-
vanyk, “How do developers document database usages
in source code?” in ASE’15, 2015, pp. 36-41.

M. Linares-Vasquez, B. Li, C. Vendome, and D. Poshy-

vanyk, “Documenting database usages and schema

constraints in database-centric applications,” in ISSTA.

ACM, 2016, pp. 270-281.

J. MacQueen et al., “Some methods for classification

and analysis of multivariate observations,” in Berkeley

symposium on mathematical statistics and probability’67.

M. Marcozzi, W. Vanhoof, and J.-L. Hainaut, “A rela-

tional symbolic execution algorithm for constraint-based

testing of database programs,” in SCAM. IEEE, 2013,

pp. 179-188.

A. Maule, W. Emmerich, and D. S. Rosenblum, “Impact

analysis of database schema changes,” in ICSE’0S, pp.

451-460.

T. Menzies, J. Greenwald, and A. Frank, “Data mining

static code attributes to learn defect predictors,” TSE,

vol. 33, no. 1, pp. 2-13, 2007.

L. Meurice, C. Nagy, and A. Cleve, “Detecting and pre-

venting program inconsistencies under database schema

evolution,” in QRS 2016. 1EEE, 2016, pp. 262-273.

, “Static analysis of dynamic database usage in

java systems,” in International Conference on Advanced

Information Systems Engineering. Springer, 2016, pp.

491-506.

L. Meurice, F. Ruiz, J. Weber, and A. Cleve, “Establish-

ing referential integrity in legacy information systems -

reality bites!” in ICSME’14, pp. 461-465.

K. Miura, S. McIntosh, Y. Kamei, A. E. Hassan,

and N. Ubayashi, “The impact of task granularity

on co-evolution analyses,” in Proceedings of the 10th

ACM/IEEE International Symposium on Empirical Soft-

ware Engineering and Measurement. ACM, 2016, p. 47.

O. Mlouki, F. Khomh, and G. Antoniol, “On the detection

of licenses violations in android ecosystem,” in SANER,

2016, pp. 382-392.

[56] C. Nagy, “Static analysis of data-intensive applications,”
in CSMR’13, pp. 435-438.

[57] J. Nijjar, I. Bocié, and T. Bultan, “Data model property
inference, verification, and repair for web applications,”
TOSEM, vol. 24, no. 4, p. 25, 2015.

[58] K. Pan, X. W, and T. X, “Guided test generation for
database applications via synthesized database interac-
tions,” TOSEM’14, 2014.

[59] K. Pan, X. Wu, and T. X, “Automatic test generation for
mutation testing on database applications,” in AST’13,
2013, pp. 111-117.

[60] K. Pan, X. Wu, and T. Xie, “Generating program inputs
for database application testing,” in ASE’11, pp. 73-82.

[61] F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing

privacy and utility in cross-company defect prediction,”

TSE’13, pp. 1054-1068.

D. Qiu, B. Li, and Z. Su, “An empirical analysis of the

co-evolution of schema and code in database application-

s,” in FSE’13, pp. 125-135.

F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu, “Sam-

ple size vs. bias in defect prediction,” in Proceedings of

the 2013 9th Joint Meeting on Foundations of Software

Engineering. ACM, 2013, pp. 147-157.

T. Rolfsnes, L. Moonen, S. Di Alesio, R. Behjati, and

D. Binkley, “Improving change recommendation using

aggregated association rules,” in Proceedings of the 13th

MSR. ACM, 2016, pp. 73-84.

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[62]

[63]

[64]

12

[65] D. Saha, M. G. Nanda, P. Dhoolia, V. K. Nandivada,
V. Sinha, and S. Chandra, “Fault localization for data-
centric programs,” in Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference
on Foundations of software engineering. ACM, 2011,
pp- 157-167.

D. Scott and R. Sharp, “Abstracting application-level web
security,” in Proceedings of international conference on
World Wide Web’02. ACM, pp. 396-407.

J. Siegmund, C. Kaistner, J. Liebig, S. Apel, and S. Ha-
nenberg, “Measuring and modeling programming expe-
rience,” Empirical Software Engineering, vol. 19, no. 5,
pp- 1299-1334, 2014.

D. Sjgberg, “Quantifying schema evolution,” Information
and Software Technology, vol. 35, no. 1, pp. 35-44, 1993.
R. Srikant and R. Agrawal, “Mining quantitative associ-
ation rules in large relational tables,” in ACM SIGMOD
Record, 1996, pp. 1-12.

K. Taneja, Y. Zhang, and T. Xie, “Moda: Automated test
generation for database applications via mock objects,”
in ASE’10, pp. 289-292.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,
“Efficient software-based fault isolation,” ser. SOSP 93,
pp. 203-216.

C. Weiss, C. Rubio-Gonzalez, and B. Liblit, “Database-
backed program analysis for scalable error propagation,”
in Proceedings of the 37th International Conference on
Software Engineering-Volume 1. 1EEE Press, 2015, pp.
586-597.

I. H. Witten and E. Frank, Data Mining: Practical ma-
chine learning tools and techniques. Morgan Kaufmann,
2005.

R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink:
recovering links between bugs and changes,” in Pro-
ceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software
engineering. ACM, 2011, pp. 15-25.

J. Xuan and M. Monperrus, “Learning to combine multi-
ple ranking metrics for fault localization,” in Proceedings
of ICSME, 2014.

Y. Yang, M. Harman, J. Krinke, S. Islam, D. Binkley,
Y. Zhou, and B. Xu, “An empirical study on dependence
clusters for effort-aware fault-proneness prediction,” in
ASE. ACM, 2016, pp. 296-307.

S. Yoo and M. Harman, “Test data regeneration: gen-
erating new test data from existing test data,” Software
Testing, Verification and Reliability, vol. 22, no. 3, pp.
171-201, 2012.

D. Zhang, S. Han, Y. Dang, J.-G. Lou, H. Zhang, and
T. Xie, “Software analytics in practice,” Software, IEEE,
vol. 30, no. 5, pp. 30-37, 2013.

W. Zhang, C. Sun, J. Lim, S. Lu, and T. Reps, “Conmem:
Detecting crash-triggering concurrency bugs through an
effect-oriented approach,” TOSEM, vol. 22, 2013.

Y. Zheng, T. Bao, and X. Zhang, “Statically locating
web application bugs caused by asynchronous calls,”
in Proceedings of the 20th international conference on
World wide web. ACM, 2011, pp. 805-814.

H. Zhong and Z. Su, “An empirical study on real bug
fixes,” in ICSE, 2015.

[66]

[67]

[68]

[69]

[70]

(71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

