
Automatically Documenting Software Artifacts
Boyang Li

Advisor: Denys Poshyvanyk
Department of Computer Science, College of William Mary

Williamsburg, VA 23185
{boyang,denys}@cs.wm.edu

Abstract—Software artifacts constantly change during evolu-
tion and maintenance of software systems. One critical artifact
that developers need to be able to maintain during evolution
and maintenance of software systems is up-to-date and complete
documentation. However, recent studies on the co-evolution of
comments and code showed that the comments are rarely main-
tained or updated when the respective source code is changed.

In order to understand developer practices regarding doc-
umenting two kinds of software artifacts, unit test cases and
database-related operations, we designed two empirical studies
both composed of (i) an online survey with contributors of open
source projects and (ii) a mining-based analysis of method com-
ments in these projects. Later, motivated by the findings of the
studies, we proposed two novel approaches. UnitTestScribe
is an approach for automatically documenting test cases, while
DBScribe is an approach for automatically documenting test
cases. We evaluated our tools by means of an online survey
with industrial developers and graduate students. In general,
participants indicated that descriptions generated by our tools
are complete, concise, and easy to read.

I. INTRODUCTION

Software artifacts, like unit test cases and database schema,
constantly change during evolution and maintenance of soft-
ware systems. For example, the number of unit test cases
often grows as new functionality is introduced into the sys-
tem. Maintaining these unit tests is important to reduce the
introduction of regression bugs due to outdated unit tests (i.e.,
unit test cases that were not updated simultaneously with
the update of the particular functionality that it intends to
test). For instance, Test Driven Development (TDD) [4] has
been employed by a myriad of developers and organizations
to create and expand software systems [5, 6]. TDD requires
unit test cases to be written prior to development after which
developers write code to build the particular functionality that
is required to pass those existing test cases.

On the other hand, previous work extensively studied the
co-evolution of source code and DB schemas demonstrat-
ing that: (i) schemas evolve frequently, (ii) the co-evolution
oftentimes happens asynchronously (i.e., code and schema
evolve collaterally) [9, 36], and (iii) schema changes have
significant impact on DCAs’ code [9]. Therefore, co-evolution
of code and DB schemas in DCAs often leads to two types of
challenging scenarios for developers, where (i) changes to the
DB schema need to be incorporated in the the source code, and
(ii) maintenance of a DCA’s code requires understanding of
how the features are implemented by relying on DB operations
and corresponding schema constraints. Both scenarios demand
detailed and up-to-date knowledge of the DB schema.

Therefore, one critical artifact that developers need to be
able to maintain during evolution and maintenance of software
systems is up-to-date and complete documentation. Source
code comments are another source of documentation that could
help developers understand nuances of the test cases and

database usages. However, recent studies on the co-evolution
of comments and code showed that the comments are rarely
maintained or updated when the respective source code is
changed [14, 15]. In order to support developers in maintaining
unit test cases and database schema usage, we propose novel
approaches,UnitTestScribe and DBScribe. We evalu-
ated our tools by means of an online survey with industrial
developers and graduate students. In general, participants
indicated that descriptions generated by our tools are complete,
concise, and easy to read.

In summary, the paper makes the following contributions:
• Two empirical studies to understand whether developers

comment and update comments of unit test cases and
database related methods;

• Two surveies of both open-source and industrial de-
velopers to understand their perspective and practices
with respect to documenting unit test cases and database
related methods;

• An approach for automatically documenting test cases;
• An approach for automatically documenting database

schema usage;
II. RELATED WORKS

A. Studies on automatically summarizing software artifacts
There are several related techniques for automatically sum-

marizing and documenting different software artifacts. Srid-
hara et al. [41] presented an approach for automatically gen-
erating summary comments for Java methods. They demon-
strated how to identify important lines of code, depending
on various characteristics of methods, and convert them into
NL phrases. McBurney and McMillan [31] presented a novel
approach for method summarization by considering contextual
information. As far as class level granularity is concerned,
Moreno et al. [32, 33] focused on documenting content and
responsibilities of the Java classes. Their descriptions are
based on superclass, stereotypes of the class, and behavior
of the blocks. Automatic summarization techniques have also
been applied to exceptions [7], bug reports [37], loops [42],
changes summary [8, 10, 27], and code examples [44].
B. Approaches and studies on unit test cases

Kamimura and Murphy [21] presented an approach for
automatically summarizing JUnit test cases. The approach
identified the focal method based on how many times the test
method invokes the function. The least occurring invocations
are the most unique function calls for the test case. Xuan and
Monperrus [43] split existing test cases into multiple fractions
for improving fault localization. Their test case slicing ap-
proach has also influence on code readability. Recently, Pham
et al. [35] presented an approach for automatically recom-
mending test code examples when programmers make changes



in the code. Panichella et al. [34] presented an approach
for automatically generating test case summaries for JUnit
test cases. Runeson [39] conducted a survey to understand
how unit testing is perceived in companies. Some researchers
focused on other aspects of testing, which include unit test case
minimization [22, 23], prioritization [12, 38], automatic test
case generation [11, 16], test templates [45], data generation
[25, 29]. However, none of the existing approaches focuses on
generating unit test case documentation as NL summaries.

C. Approaches and studies on DCAs
Recent studies showed a presence of strong evolutionary

coupling between database schemas and source code [18, 30,
36, 40]. Maule et al. used program slicing and dataflow-based
analysis to identify the impact of database schema changes
[30]. Qiu et al. conducted an empirical study into co-evolution
between DB schemas and source code demonstrating that
DB schemas frequently evolve with many different types of
changes at play [36]. Sjøberg mainly focused on database
schema changes and presented a technique for measuring the
changes of database schemas; a study on health management
systems over several years showed additions and deletions to
be the most frequent operations [40]. Cleve et al. presented a
method to analyze the change history of DBs [9]. In addition, a
group of studies focuses on inferring database relations[3, 25].

III. STATE-OF-THE-PRACTICE

In order to understand developer practices regarding doc-
umenting two kinds of software artifacts, unit test cases
and database-related operations, we designed two empirical
studies [24, 28] both composed of (i) an online survey with
contributors of open source projects at GitHub and (ii) a
mining-based analysis of method comments in these projects.

The context of study 1 was 1,414 open source C# projects
hosted on GitHub and the complete revision history of 246 of
these projects. The survey was completed by 212 developers
that either contributed to these projects or worked in industry.
The perspective is that of researchers interested in identifying
developers practices for documenting unit tests.

As for the context of study 2, we analyzed 3,113 open
source Java projects at GitHub (with JDBC API calls executing
SQL queries/statements) and the complete change history
of 264 of those projects; we also surveyed 147 developers
contributing to these projects. We were interested in identi-
fying developers practices for documenting database-related
operations.

We investigated the following research questions (RQs)
based on the two studies:
RQ1 To what extent do unit test cases (resp. database-related

operations) contain comments? This RQ aims to address
the prevalence of both a preceding comment and inner
comments for the unit test cases (resp. database-related
operations).

RQ2 To what extent do developers update unit test case
comments (resp. database-related comments)? This RQ
investigates how often developers modify and update
the unit test case comments (resp. database-related com-
ments) during software evolution.

RQ3 To what extent, do developers have difficulty under-
standing unit test cases (resp. database-related opera-
tions)? This RQ investigates whether there are obstacles
in understanding unit tests cases (resp. database-related

operations) and the need by developers for support in
this task.

A. Result summary for RQ1

Study 1: Although 47.17% of the developers indicated that
they document unit test cases in comments, we observed
that 96.44% of the projects lacked preceding comments and
85.98% lacked inner comments to document the unit tests. We
also observed that 27.93% projects contained test cases despite
53.77% of developers indicating that they “fairly often” or
“always” write test cases (83.01% if we consider the response
“sometimes”).

Study 2: While developers indicated that they documented
methods, we found 77% of methods with database access were
completely undocumented. In fact, 115 out of 147 (78.23%)
surveyed developers consider that documentation of schema
constraints should not be included in the source code and it is
a responsibility of the schema or external documentation.

B. Result summary for RQ2

Study 1: Despite 44.81% of developers indicated that they
“rarely” or “never” update unit test comments, we found that
1.54% of the preceding comments and 15.23% of the inner
comments in 101 projects were changed at least once between
releases when the unit test method was also modified.

Study 2: While approximately half of the developers indicat-
ed that they “rarely” or “never” update method comments for
database-related methods, we empirically observed that only
17.15% of methods that were changed in 3,113 open source
projects also had their comments updated at least once between
releases. Thus, we empirically found database-related methods
are far less frequently commented during evolution.

C. Result summary for RQ3

Study 1: More than half of the developers indicated a
difficulty of “moderate” to “very hard” in terms of under-
standing unit tests. Emphasizing this importance, we observed
that 89.15% of developers “agree” or strongly agree” that
maintaining test cases impacts the quality of the system. This
suggests that developers could benefit from tools that support
them in maintaining unit test cases during software evolution
and maintenance.

Study 2: Surveyed developers prefer to rely on external
database documentation and two-thirds of developers indicated
tracing constraints along the call-chain was a “moderate”
challenge or a “very hard” challenge. This opens the discussion
about whether external database documentation is enough for
supporting source code evolution and maintenance tasks.

D. Discussion

These studies suggest that (i) documenting unit test cases
and database usages is not a common practice in source
code methods, (ii) developers do not update comments when
changes are done to unit test cases or database-related method-
s, and (iii) understanding unit test cases and database-related
usage (e.g., tracing schema constraints through call-chains in
the call graph) are not an easy task in most of the cases. While
results for RQ1 and RQ2 describe developers rationale for
not documenting some software artifacts, the findings in RQ3

present a different perspective in terms of whether current
practices for documenting test cases and databases are enough
or useful for supporting developers.

2



IV. PROPOSED APPROACHES

Based on the findings from the study (Section III), it is
clearly important to have approaches to support developers
in maintaining different software artifacts (i.e., unit test cases
and database-related methods). Therefore, we designed and
implemented i) an approach, called UnitTestScribe [24],
to support unit test cases documentation and ii) a novel
approach, namely DBScribe [26], aimed at automatically
generating always up-to-date natural language descriptions of
database operations and schema constraints.
A. UnitTestScribe: Documenting unit test cases
UnitTestScribe is a novel approach that combines

static analysis, natural language processing, backward slicing,
and code summarization techniques in order to automatically
generate expressive NL descriptions concisely documenting
the purpose of unit test methods (i.e., methods in unit tests).
The main conjecture of UnitTestScribe’s approach is
that the purpose of a unit test method can be described by
identifying (i) general descriptions of the test case method,
(ii) focal methods, (iii) assertions in the test case method, and
(iv) internal data dependencies for the variables in assertions.
A focal method is a method from the system under test, which
is invoked in a unit test case, and is responsible for system
state changes that are examined through assertions in unit tests
[17]. We recognized focal methods as an important piece of
information to be included in the resulting summary.

Source Codes Unit Test Cases Unit Test Cases 
Detector 1 

Focal Method 
Detector 3 

Program Slicing 
Analyzer 5 

Focal Methods 
Information 

SWUM.NET 
4 

Stereotype 
Analyzer 2 

Variable Slicing 
Information 

SWUM.NET 
Description 

Templates 

Description 
Generator 6 

Unit Test Case 
Documentation 

Fig. 1: UnitTestScribe components and workflow.
The architecture of UnitTestScribe is depicted in

Fig. 1. The starting point of UnitTestScribe is the source
code of the system, including source code of the unit tests.
UnitTestScribe analyzes the source code to identify all
the unit test cases 1 . Then, UnitTestScribe performs
data-flow analysis to identify stereotypes at method level [13]
in the source code; the stereotypes detection is necessary
to identify the focal methods in the unit test methods 2 .
After having identified all the test cases and stereotypes,
UnitTestScribe detects focal methods for each unit test
case 3 . UnitTestScribe also uses SWUM.NET to gener-
ate a general NL description for each unit test case method.
SWUM.NET [2, 19] captures both linguistic and structural
information about a program, and then generates a sentence
describing the purpose of a source code method 4 . The
data dependencies between focal methods, assertions, and
variables in the test method are detected by performing static
backward slicing [20] 5 . Finally, the extracted information
(focal methods, assertions, slices, and SWUM sentence) are
structured in NL description by using predefined templates

Database 
server

Application 
source code

Queries/Statements 
detection

JSql 
Parser

JDT AST 
parser

1

JDT AST 
parser

Call graphs 
extractor
JDT AST 

parser

2

DB SChema 
constraints 
extractor

3

DB usage 
and 

constraints 
information
propagator

4

Descriptions 
generator

5

Descriptions

Templates

Fig. 2: DBScribe components and workflow.

6 . The final descriptions for all the methods are organized in
UnitTestScribe documentation in HTML format. In the
following subsections, we describe the details behind each of
the steps and components in UnitTestScribe.
B. DBScribe: Documenting database usages
DBScribe provides developers with updated documenta-

tion describing database-related operations and the schema
constraints imposed on those operations. The documentation
is contextualized for specific source code methods; in other
words, the documentation is generated considering the local
context of the methods and the operations delegated through
inter-procedural calls and the subsequent call-chains that in-
volve at least one SQL-statement. Therefore, our method-level
documentation can provide developers with descriptions that
work at different layers for a given DCA. Concerning the
usefulness, we designed DBScribe to help developers when
(i) understanding how features are implemented using SQL
operations, and (ii) understanding schema constraints that need
to be satisfied in both specific methods of the source code
and all the operations involved. Also, DBScribe is suitable
for on-demand execution by developers that require up-to-date
documentation.

The architecture of DBScribe is depicted in Figure 2.
DBScribe’s workflow is composed of five phases: 1 SQL-
statements and the methods executing them are detected in
the source code statically; 2 a partial call graph with the
call-chains including the methods executing SQL-statements
(locally and by delegation) are extracted from the source
code statically; 3 database schema constraints are extracted
by querying the master schema of the database engine that
has an instance of the database supporting the DCA under
analysis; 4 the constraints and SQL-statements are propa-
gated through the partial call graph from the bottom of the
paths to the root; and 5 the local and propagated constraints
and SQL-statements (at method-level) are used to generate
natural language based descriptions. Current DBScribe’s
implementation covers SQL-statements invoked by means of
JDBC and Hibernate API calls.

V. EMPIRICAL STUDY

A. Research Questions
We conducted two user studies in which the descriptions

generated by the tools were evaluated by developers, com-
puter science students, and researchers from different univer-
sities. The goal of the studies was to measure the quality
of UnitTestScribe and DBScribe descriptions as per-
ceived by users according to a well-established framework for
evaluating automatically generated documentation [10, 32, 41].
The RQs aimed at evaluating the three quality attributes in the
evaluation framework (i.e., completeness, conciseness, and
expressiveness).

3



TABLE I: Study questions and answers.
RQ 4: Do you think the message is complete? UnitTestScribe DBScribe
• Does not miss any important info. 165(63.5%) 205(65.7%)
• Misses some important info. 78(30.0%) 91(29.2%)
• Misses most important info. 17(6.5%) 16(5.1%)
RQ 5: Do you think the message is concise? UnitTestScribe DBScribe
• Contains no redundant info. 136(52.3%) 221(70.8%)
• Contains some redundant info. 102(39.2%) 77(24.7%)
• Contains a lot of redundant info. 22(8.5%) 14(4.5%)
RQ 6: Do you think the description is ex-
pressive?

UnitTestScribe DBScribe

• Is easy to read 157(60.4%) 241(77.3%)
• Is somewhat readable 69(26.5%) 60(19.2%)
• Is hard to read and understand 34(13.1%) 11(3.5%)
RQ 7: Are our generated description useful
for understanding the artifacts?

UnitTestScribe DBScribe

• Yes 21(80.8%) 48(92.3%)
• No 5(19.2%) 4(7.7%)

RQ4 How complete are the descriptions generated by the
tools (UnitTestScribe and DBScribe)?

RQ5 How concise are the descriptions generated by the tools
(UnitTestScribe and DBScribe)?

RQ6 How expressive are the descriptions generated by the
tools (UnitTestScribe and DBScribe)?

RQ7 How well can the tools help developers understand the
related software maintenance tasks?

B. Data Collection
To answer the RQs related to UnitTestScribe,

we asked the participants to evaluate the descriptions
generated by UnitTestScribe for four open
source systems SrcML.NET, Sando, Glimpse, and
Google-api-dotnet. For each group, we created an
on-line survey using the Qualtrics tool [1]. The survey
included (i) demographic background questions, and (ii)
questions aimed at answering the RQs (See Table I). We also
checked the free-text responses in depth to understand the
rationale behind the choices.

We conducted another user study to evaluate the usefulness
of DBScribe. As for the context, we used five open-source
DCAs hosted at GitHub and SourceForge. We randomly
selected six methods from each system (30 descriptions in total
from five open-source DCAs); in particular, we selected two
methods from the GUI layer that are at the root of method
call-chains invoking SQL-statements, two methods that are
leaves of the call-chains (i.e., declare SQL-statements, but
do not delegate declaration/execution to other methods), and
two methods in the middle of the call-chains. This selection
was aimed at evaluating DBScribe’s descriptions at different
layers of DCAs’ architectures. Also, we limited the survey to
six descriptions per system to make sure our survey could be
completed in one hour to avoid an early survey drop-out.

Due to the space limitation, we did not show the detailed
information about the subject applications and experimental
designs. More information can be found in our previous
publications and their online appendix [24, 26].
C. Results

The results of the studies are shown in Table I.
For completeness (RQ 4), 63.5% UnitTestScribe de-

scriptions do not miss any important information, while only
6.5% of the answers indicate that the descriptions miss major-
ity important information to understand the unit test case. We
also observed that UnitTestScribe was evaluated more
positively on complex methods rather than simple methods.
In addition, the results show that 65.71% answers agreed that

DBScribe’s descriptions do not miss any important infor-
mation, while only 5.13% answers indicated the documents
missed the most important information.

For conciseness (RQ 5), 52.3% of the answers indicate
that UnitTestScribe descriptions contain no redundan-
t/useless information, while only 8.5% of the answers indicate
the description contain significant amount of redundant/useless
information. Most of the responses with lower scores were
from test case methods with the number of assertions greater
than four. On the other hand, 70.83% of the answers asserted
that DBScribe’s descriptions do not contain redundant infor-
mation and only 4.49% answers indicated that the descriptions
contain a lot of redundant information.

For expressiveness (RQ 6), 60.4% of the answers indicate
that UnitTestScribe descriptions were easy to read and
understand, while only 13.1% of the answers indicated the
descriptions were hard to read and understand. The distribution
of ratings with the lowest rank is similar to the conciseness
question where descriptions for simple test case methods were
evaluated more positively than the complex test case methods.
Similar to conciseness, the reason is that UnitTestScribe
are attempting to cover all important information for ex-
pressiveness. On the other hand, in 77.3% of the answers,
DBScribe’s descriptions were evaluated as easy to read,
while only 3.5% answers indicated that the descriptions were
hard to read. The participants who thought some descriptions
were hard to read claimed that the descriptions had a lot
of information. Similar to Conciseness, our descriptions are
attempting to capture more important information, which may
come at the expense of expressiveness.

For preferences (RQ 7), we also asked whether the gen-
erated UnitTestScribe descriptions are useful for under-
standing the unit test cases. 21 out of 26 (80.8%) participants
answered “Yes”. For DBScribe, 48 participants (92.3%)
claimed that the generated descriptions would be useful for
understanding the database usages in source code methods.

VI. CONCLUSION

This work is motivated by studies in which we surveyed
open source/professional developers to understand their per-
spective towards unit test cases and database operations. We
found that developers believe that maintaining good documen-
tations is important for the quality of a software system. We
also mined changes of large amount of open source projects
to show that the projects lack related comments in practice.

We presented a novel approach UnitTestScribe that
combines static analysis, natural language processing, and
code summarization techniques in order to automatically gen-
erate expressive NL descriptions concisely documenting the
purpose of unit test methods. Future work will support other
unit test frameworks and other programming languages.

In addition, we presented DBScribe, a novel approach for
automatically generating natural language documentation at
source code method level that describe database usages and
constraints for a given DCA. DBScribe currently supports
systems using the JDBC APIs; therefore, future work will
support SQL-statements executed with other ORM frameworks
and database engines. We will improve the SQL-statement
detection by resolving SQL literals in source code that are
declared with values returned by interprocedural calls or
passed as arguments to methods.

4



REFERENCES
[1] “qualtrics. http://www.qualtrics.com.”
[2] “Swum.net. https://github.com/abb-iss/Swum.NET/.”
[3] R. Alhajj, “Extracting the extended entity-relationship

model from a legacy relational database,” Information
Systems, vol. 28, no. 6, pp. 597–618, 2003.

[4] K. Beck, Test Driven Development: By Example.
Addison-Wesley Professional, 2002.

[5] ——, Test-driven development: by example. Addison-
Wesley Professional, 2003.

[6] K. Beck and E. Gamma, “Test infected: Programmers
love writing tests,” Java Report, vol. 3, no. 7, 1998.

[7] R. P. Buse and W. R. Weimer, “Automatic documentation
inference for exceptions,” in 2008 ISSTA.

[8] ——, “Automatically documenting program changes,” in
Proceedings of the IEEE/ACM ASE, 2010, pp. 33–42.

[9] A. Cleve, M. Gobert, L. Meurice, J. Maes, and J. We-
ber, “Understanding database schema evolution: A case
study,” Science of Computer Programming, vol. 97.

[10] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and
D. Poshyvanyk, “On automatically generating commit
messages via summarization of source code changes,”
in SCAM’14. IEEE, 2014, pp. 275–284.

[11] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer,
“Modeling readability to improve unit tests,” in Proceed-
ings of the 2015 10th Joint Meeting on FSE, 2015.

[12] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche,
“Coverage-based test case prioritisation: An industrial
case study,” in ICST’13. IEEE, 2013, pp. 302–311.

[13] N. Dragan, M. L. Collard, J. Maletic et al., “Reverse
engineering method stereotypes,” in ICSM’06.

[14] B. Fluri, M. Wursch, and H. Gall, “Do code and com-
ments co-evolve? on the relation between source code
and comment changes,” in WCRE 2007., Oct, pp. 70–79.

[15] B. Fluri, M. Würsch, E. Giger, and H. C. Gall, “Ana-
lyzing the co-evolution of comments and source code,”
Software Quality Journal, vol. 17, no. 4, 2009.

[16] G. Fraser and A. Arcuri, “Evosuite: automatic test suite
generation for object-oriented software,” in FSE’11.

[17] M. Ghafari, C. Ghezzi, and K. Rubinov, “Automatically
identifying focal methods under test in unit test cases,”
in SCAM’15, p. 10 pages.

[18] M. Goeminne, A. Decan, and T. Mens, “Co-evolving
code-related and database-related changes in a data-
intensive software system,” in CSMR-WCRE 2014.

[19] E. Hill, Integrating natural language and program struc-
ture information to improve software search and explo-
ration. University of Delaware, 2010.

[20] R. Jhala and R. Majumdar, “Path slicing,” in ACM
SIGPLAN Notices, vol. 40, no. 6. ACM, 2005.

[21] M. Kamimura and G. C. Murphy, “Towards generat-
ing human-oriented summaries of unit test cases,” in
ICPC’13. IEEE, 2013, pp. 215–218.

[22] Y. Lei and J. H. Andrews, “Minimization of randomized
unit test cases,” in Software Reliability Engineering,
2005. IEEE, 2005.

[23] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer,
“Efficient unit test case minimization,” in ASE 2007.

[24] B. Li, C. Vendome, M. Linares-Vasquez, D. Poshyvanyk,
and N. Kraft, “Automatically documenting unit test cas-
es,” in Proceedings of ICST’16, Apr. 2016.

[25] B. Li, M. Grechanik, and D. Poshyvanyk, “Sanitizing

and minimizing databases for software application test
outsourcing,” in ICST 2014. IEEE, 2014, pp. 233–242.

[26] M. Linares-Vasquez, B. Li, C. Vendome, and D. Poshy-
vanyk, “Documenting database usages and schema con-
straints in database-centric applications,” in ISSTA’16.

[27] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and
D. Poshyvanyk, “Changescribe: A tool for automatical-
ly generating commit messages,” in 37th IEEE/ACM
ICSE’15, Formal Research Tool Demonstration, 2015.

[28] M. Linares-Vásquez, B. Li, C. Vendome, and D. Poshy-
vanyk, “How do developers document database usages
in source code?” in ASE 2015. IEEE, pp. 36–41.

[29] R. Malhotra and M. Garg, “An adequacy based test data
generation technique using genetic algorithms,” Journal
of information processing systems, vol. 7, no. 2, 2011.

[30] A. Maule, W. Emmerich, and D. S. Rosenblum, “Impact
analysis of database schema changes,” in ICPC 2008.

[31] P. W. McBurney and C. McMillan, “Automatic docu-
mentation generation via source code summarization of
method context,” in ICPC 2014. ACM, pp. 279–290.

[32] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pol-
lock, and K. Vijay-Shanker, “Automatic generation of
natural language summaries for java classes,” in ICPC
2013. IEEE, pp. 23–32.

[33] L. Moreno, A. Marcus, L. Pollock, and K. Vijay-Shanker,
“Jsummarizer: An automatic generator of natural lan-
guage summaries for java classes,” in ICPC 2013.

[34] S. Panichella, A. Panichella, M. Beller, A. Zaidman,
and H. Gall, “The impact of test case summaries on
bug fixing performance: An empirical investigation,” in
Proceedings of the 38th ICSE, 2016.

[35] R. Pham, Y. Stoliar, and K. Schneider, “Automatically
recommending test code examples to inexperienced de-
velopers,” in FSE’15. ACM, pp. 890–893.

[36] D. Qiu, B. Li, and Z. Su, “An empirical analysis of the
co-evolution of schema and code in database application-
s,” in Proceedings of the FSE 2013.

[37] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic
summarization of bug reports,” Software Engineering,
IEEE Transactions on, vol. 40, no. 4, pp. 366–380, 2014.

[38] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
“Prioritizing test cases for regression testing,” Software
Engineering, IEEE Transactions on, vol. 27, 2001.

[39] P. Runeson, “A survey of unit testing practices,” Software,
IEEE, vol. 23, no. 4, pp. 22–29, 2006.

[40] D. Sjøberg, “Quantifying schema evolution,” Information
and Software Technology, vol. 35, no. 1, pp. 35–44, 1993.

[41] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and
K. Vijay-Shanker, “Towards automatically generating
summary comments for java methods,” in ASE, 2010.

[42] X. Wang, L. Pollock, and K. Vijay-Shanker, “Developing
a model of loop actions by mining loop characteristics
from a large code corpus,” in ICSME. IEEE, Sep 2015.

[43] J. Xuan and M. Monperrus, “Test case purification for
improving fault localization,” in FSE 2014. ACM.

[44] A. T. Ying and M. P. Robillard, “Selection and presenta-
tion practices for code example summarization,” in FSE.
ACM, 2014, pp. 460–471.

[45] B. Zhang, E. Hill, and J. Clause, “Automatically gener-
ating test templates from test names (n),” in ASE 2015.

5


