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Abstract—A fundamental problem in test outsourcing is how
to allow a database-centric application (DCA) owner to release
a smaller subset of its private data along with the application.
In addition, the DCA owner needs tangible guarantees that
the entities in this data are protected at a certain level of
privacy, while retaining testing efficacy. We are trying to solve
this problem by balancing four important dimensions: testing
coverage, privacy, semantic correctness, and data minimization.
We built a novel approach that enhances both utility and privacy
of data for software testing using a novel combination of program
analysis, clustering, and association rule mining approaches. To
the best of our knowledge, there exists no prior approaches that
synergistically address all of the aforementioned dimensions. We
also proposed several avenues for future work based on our
existing work.

I. PROBLEM INTRODUCTION

Currently, many organizations use DCAs to support and
manage their businesses. Consider a scenario where a large
organization, such as a hospital, insurance company, or bank
needs to perform maintenance testing of their product. In
this case they may hire a large software consulting company
to do so since outsourcing these tasks maybe potentially
cost-effective and lead to higher quality. One obstacle is
that application and data owners can no longer easily share
confidential data with outsourcing service providers because
of recent data protection laws passed in several countries [7].
In addition, it is also very time-consuming to test applications
that include large databases. Since the application owners
always want testing data to be efficient, a trivial method can
be to delete some records and modify any sensitive data in
the database. However, simply removing and sanitizing data
often leads to significantly worsened test coverage metrics
and fewer uncovered faults, thereby reducing the quality of
software applications [6]. For instance, if values of the attribute
Nationality are replaced with the generic value “Human,”
DCAs may execute some paths that result in exceptions or miss
certain paths [6].

Therefore, a fundamental problem in test outsourcing is
how to allow a DCA owner to release a smaller subset of the
private data assuring that the entities in this data (e.g., people,
organizations) are protected at a certain level, while retaining
testing efficacy. More specifically, we focus on balancing the
following four dimensions:

• Testing coverage. Statement and branch coverage
are significant metrics to measure the testing quality.
Higher testing coverage usually reveals more bugs in
the code.

• Privacy. For testing databases, our goal is to limit the
information that can be inferred by attackers.

• Semantic correctness. The generated (or synthetic)
data should semantically match the original data. For
example, there should be no entries in the database in
which a male patient suffers from gestational diabetes.

• Data minimization. Fewer representative records in
the database vs. complete set of records would in-
crease testing efficiency.

Although the problem is important for software testing,
there is a limited number of papers currently published on
this topic. Two main reasons may account for this. First,
researchers started to realize the importance of electronic
information privacy in the recent years. Meanwhile, many
laws were introduced that force companies to protect clients’
sensitive information [7]. Second, it is only in the past decade
that outsourcing is becoming mainstream. Clearly, research at
the intersection of software engineering and data privacy is a
new but growing research area.

II. PREVIOUS WORK

To address this issue, we presented a novel approach for
Protecting and mInimizing databases for Software TestIng
taSks (PISTIS) , which can both sanitize and minimize a
database that comes along with an application [9]. PISTIS
uses a weight-based data clustering algorithm that partitions
data in the database using information obtained via program
analysis. The weight of an attribute can indicate how this
data is used by the application. The approach also computes
a centroid object for each cluster, which represents different
persons or entities in the cluster. Intuitively, the centroid object
is the most representative node in the cluster. In addition, we
use associative rule mining to compute constraints, and then
use these constraints to ensure that the centroid objects are
representative of the general population of the data.

A. Architecture and Process

Due to space limits, we do not present all the technical
details here. The architecture of PISTIS is shown in Figure 1.
The inputs to PISTIS are application’s source code and DB0

which is the original database.

PISTIS first performs control- and data- flow analyses (2)
using the Soot toolkit1 in order to establish how the DCA uses
values of different database attributes. The ranks of attributes
(3) reflect how much these attributes impact data and control
flow in a given program. Ideally, higher rank means that the
attribute affects more statements in DCAs.

For the clustering algorithm component, the inputs are
DB0, ranks of attributes, and the number of clusters k. First,

1http://www.sable.mcgill.ca/soot



Fig. 1: The architecture of PISTIS
PISTIS transforms the data, so that distance can be computed
between different types of data. For numerical attributes, we
normalize the value dividing by the maximum value of the
attribute in the database. For categorical attributes, the situation
is different, since it is not straightforward to define the order
on the values of these attributes. Therefore, we follow a
general approach to assume that every distinct value for a
given attribute is equally different from one another [2]. We
represent each distinct value either as one if it is present for a
given row, or zero otherwise. In the next step, PISTIS applies
weighted k-means clustering to group a normalized DB0 based
on the ranks. Once clustering is done, the clustered original
database DBC is outputted (5). Also, PISTIS computes the
centroid records by computing the average of the values for
each column of each cluster. Once it is done, it maps the
resulting values back to specific distinct values and generates
a new dataset.

PISTIS also uses (6) an associative rule mining algorithm,
Apriori [1], to generate association rules (7), which describe
semantic constraints that are obtained from data in DB0. On the
other hand, PISTIS extracts the database schema and its con-
straints from DB0 using metadata services (8)(9). The asso-
ciation rules and constraints can be used to help in correcting
the new dataset that is generated (10). For example, assume
that we obtain an association rule “hysterectomy→female” and
a record that indicates a “male” with “hysterectomy”, we can
correct the record to “female” by applying the rule. The final
output of PISTIS is a sanitized and minimized database with
semantically correct data records (11).

B. Experimental Evaluation

We evaluated the proposed approach on two open-source
Java applications, RiskIt and DurboDax [6]. We evalu-
ated statement coverage and branch coverage over different
numbers of clusters k, which we varied between 10 to 2000.
We show that a reduction in statement coverage of no more
than 25%, while minimizing the size of the database by more
than an order of magnitude. In addition, we also evaluated
the disclosure rate of our approach, which indicates less
information leakage. More detailed results are presented in our
ICST’14 paper [9].

III. RESEARCH PLANS

For future work, we are planning on attacking the following
problems: i) We only clustered 4000 random records in each
database. The time is limited by the number of records and the

number of attributes. It would be interesting to create a faster
algorithm. Alternatively, a weight threshold could be utilized
to determine the attributes for computation, since currently all
of the attributes are weighted. ii) We evaluated the disclosure
rate by computing average similarity between the generated
data and the original data. It would be interesting if we could
refine the disclosure rate definition. More specifically, defining
new privacy metrics requires further research. iii) We weighted
attributes based on their impact on the number of statements.
The attributes also can be weighted by other factors, such as
impact on the number of branches or hybrid factors. iv) We
used association rules to correct data. In the experiment, one
example of the rule we obtained was GQTYPE=(-inf-0.5]→
FARM=‘All’. It would be interesting if we can generate more
useful rules, however, we understand that this depends on the
underlying databases. v) In the previous experiments, we used
k-means algorithm for clustering. An interesting investigation
would be to compare the results of k-means algorithm with
k-medians algorithm.
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