
ABSTRACT

PRIVATE DATA QUERYING IN THE PRECOMPUTATION MODEL

by Boyang Li

Private data querying(PDQ) is about querying a database held by a server without: i) revealing any
information about the query to the server, and ii) learning more information than the result of the
query. Prior solutions to the PDQ problem require linear(in the size of the dataset) computation
and communication, which is impractical for large datasets. In this thesis, we propose a new
model for secure computation that separates PDQ protocols into two phases: a precomputation
phase and a query phase. We introduce a scheme with sublinear computation and communication
query cost under the assumption that the data owner can do a reasonable amount of computation
at the precomputation phase. This assumption is reasonable in many environments when the data
is known ahead of time and the queries are known at a later time. We introduce such protocols
for the following database problems: existence problem, message lookup, the rank of query, one
dimensional query, two dimensional range query, a small data change by the server.
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1 Introduction

With the rapid development of computer technology, more and more organizations use computers

to store large amounts of information. Furthermore, some of this information is private. Even

though the information is private, the owners of the data may want to provide certain queriers with

access to some of the data. However, in order to protect the privacy of the information, the data

owner wants to provide only the results of the query; what complicates this matter further is that

the querier does not want to reveal the content of the query. In the rest of this proposal, we will use

“server” to denote the data owner and “client” to denote the data querier.

This technique is useful in many areas when a client queries a secret dataset and the query itself

is also a secret. Consider the following situation: suppose that a federal agency (e.g., FBI, DHS,

etc) wants to determine if a specific suspect has had a transaction with a bank. The federal agency

should learn nothing beyond whether the transaction is in the system, because we assume that the

federal agency only has authority (in the form of a warrant) to view information about the specific

suspect. On the other hand, the bank should not know the request of the agency, including which

records have been searched. The intent of this idea is to protect information from suspects. The

reason that it is important to protect this information is two-fold: 1)the suspect is not necessarily

guilty and revealing this information could damage an innocent suspect, and 2)an insider at the

bank could leak information about a potential suspect. Hence our goal is that at the end of the

interaction, the federal agency will only get the results of its query, and the bank learns nothing

about the agency’s query.

There are several papers such as [1] and [2] that give a solution for exchanging data in a

private manner that can be used to solve this problem and similar problems. In these solutions, the

communication and computation costs are linear in the size of the datasets. Clearly, these schemes

are not scalable for large datasets. The goal of our proposal is to reduce the communication and

computation costs required to run the protocol into something that is sublinear in the dataset.
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Unfortunately, this goal is not achievable in the current framework, because the server has all the

information of the dataset, and if the server does not “touch” every element in the dataset, then

the server learns some of the elements which do not belong to the query. Leaking this information

should not be allowed in the protocols, so the server must “touch” all elements in the dataset, hence

the computation cost is at least linear in the size of the dataset.

Reconsider the previous example, the bank knows that the federal agency will ask a query

about suspects at some point in time. The bank wants to supply the encryption data to the agency

before the query, so that the query can be handled efficiently. Hence the goal is to minimize the

cost to process the query once it becomes available. More formally, we separate the protocol into

two phases: a precomputation phase and a query phase. In the precomputation phase, the server

has the entire dataset and has the ability to do some precomputations. Also, the server can send

a single message(perhaps it was stored in a DVD or CD) to the client ahead of time. During the

query phase, the client uses the information from the precomputation phase and its input to query

the database with sublinear computation/communication.

In this paper, we introduce such a new protocol and use the protocol to solve various prob-

lems. In addition, we provide a new tool, named Chained-PEGTT, which is a variation of Yao’s

scrambled circuit. We also implement the protocol and give the result of experiments to show the

contribution.

The rest of this paper is organized as follows: Section 2 introduces the prior works for this

problem and some related problems. Section 3 introduces the background technologies that we

use in our protocol. Section 4 shows the protocol of Chained PEGTT. In section 5, a full protocol

for the private database search problem in the precomputation model is given. We also give the

varied protocols which can solve the other problems. Section 6 gives a formal proof of security

for our protocol and the Chained PEGTT. In section 7, we present two experiments and the results,

which are the comparison between naive solution and ours solution and the comparison for our

scheme in different bit size. Section 8 concludes the paper and gives future work.
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2 Prior Work

The two-party secure function evaluation is two parties A and B with private input values x and y,

jointly compute and respectively get the outputs f1(x, y) and f2(x, y). At the end of the protocol,

the party A only knows x and f1(x, y) and the party B knows y and f2(x, y). More formally, the

security means that no adversary can learn more knowledge other than input and output of the

protocol and anything that can be computed from them in polynomial time. We assume that the

adversary has semi-honest behavior, who follows the protocol but wants to compute information

other than what he/she is authorized to get.

Yao’s paper [1] gives protocol for secure function evaluation. Lindell and Pinkas summarized

and proved the security of Yao’s original protocol [3]. The basic idea of Yao’s approach is to build

a circuit for computing the function gate by gate, from the input wires to the output wires. The

approach gave a technique that compute the results of any circuit without revealing any wire’s

values other than the output wires.

While the previous result is very general, several papers have attempted to achieve more effi-

cient results for domain-specific problems. For example, [7] gives a protocol for set intersection.

In addition, the papers [8] and [9] give protocols for the private comparison to determine which

party has greater value. That is, two parties hold private input numbers x, y, respectively. At the

end of the protocol, both parties can learn whether x > y without revealing other informations.

Another problem which is similar to the problem that we were solving is Private Information

Retrieval(PIR, [4], [15] and [5]). PIR is a problem that the server has a n-bit string x = x1x2 . . . xn

and the client tries to get a specific bit xi from the server. Furthermore, the server does not obtain

any information about i, such as “i 6= 67” or “i ≤ 51”. The paper [4] presents several solutions

to the problem by using k copies of the dataset (k ≥ 2) if the server has unbounded computing

power. The paper also shows that models that can minimize the communication complexity into

a sublinear dataset size when the server has computational limit. But in these models, the client
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learns more information than he/she should get. Although [4] then shows that the symmetric PIR

can hide the private data from both parties, the computation complexity will still be linear. In sum-

mary, we can use none of the models represented by [4] to minimize the computation complexity.

In addition, PIR is only a simple problem querying for one bit. Hence the solution for PIR is not

useful to solve our problem. Furthermore, the paper [6] analyses that the PIR is not practical in the

real world due to rapid improvement of hardware and bandwidth.

Before [2], secure function evaluation(SFE) was mainly considered a purely theoretical tool.

With development of the cryptographic techniques and the speed up of hardware, [2] showed that

SFE can be practical. They designed a high-level programming language, the Secure Function

Definition Language (SFDL), and a lower-level language, the Secure Hardware Definition Lan-

guage (SHDL), which can be used to generate Boolean circuits. They created a compiler that can

translate a SFDL file into a SHDL file, and therefore, convert the higher-level program into a cir-

cuit. Later, the paper gives the implementation of a specific Two-Party SFE protocol based on the

protocol suggested by [1]. Finally, the paper showed experimentally that SFE was practical for

some problems.

3 Background

3.1 Notation

Given value X ∈ {0, 1}n, let X(0) . . . X(n−1) be binary representation of X in big endian, and as

a short hand notation let X(i,j) be the bit string X(i) X(i+1) . . . X(j).The notation X [α,β] denotes

X(αβ,(α+1)β−1). Let {kji : i ∈ [a1, a2], j ∈ [b1, b2]} denote a set with elements kji for each i ∈

[a1, a2] and for each j ∈ [b1, b2]. For example, {kji : i ∈ [0, 1], j ∈ [0, 1]} indicates that the set has

elements k0
0, k

1
0, k

0
1, k

1
1 . Let [M : S] denote an array with subscript S. For example, [M : {0, 1}m]

represents an array of 2m message from m0m to m1m .
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3.2 Oblivious Transfer

We will use oblivious transfer as a tool to initialize our protocol. The first paper that made the

notion of “oblivious transfer”(OT) is Rabin’s [10]. There are many equivalent forms of it. In this

proposal, we use 1-out-of-2 oblivious transfer (OT 2
1 ) which was given by Naor and Pinkas[12]. In

the OT 2
1 protocol, the server inputs two string values x0, x1 and the client inputs a bit σ ∈ {0, 1}.

At the end of the protocol, the client learns the string xσ. What makes this oblivious is that the

server learns nothing about the client’s input while the client learns nothing other than xσ. The

cost of OT 2
1 is O(1) communication and O(1) modular exponentiations. We use the notation

OT (x0, x1;σ) to denote oblivious transfer in the rest of this proposal.

3.3 Yao’s Protocol

In this section, we introduce Yao’s scrambled circuit, which allows us to do secure function evalu-

ation. The circuits are constructed by a series of gate and the connection wires including the input

wires, the output wires, and the intermediate wires. There are two parties involved in its whole

evaluation process where one party is a circuit generator and other is a circuit evaluator.Lindell

and Pinkas [3] proved this protocol is secure against semi-honest adversaries. The generator first

computes the circuit and then computes a scrambled circuit. The evaluator is then given the scram-

bled circuit and evaluates it to obtain the result. Let’s assume that a circuit has m wires inputs

and n gates where m ≤ n. The complexity of the protocol is as following: the number of mod-

ular exponentiation is O(m), the number of computation complexity is O(n), the communication

complexity is O(n), and the number of round is O(1).

As the protocols proposed in this manuscript rely heavily on the technical details of this pro-

tocol, we now describe these details. At first we clarify some notations about the circuit that we

use. In this manuscript, we use capital letters represent sets and lower case represents individual

elements. Also, the digit of letter’s subscript denotes the serial number of that element. We use the
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notation C to denote a circuit. The notation GT = {gt1 . . . gtn} to denote the gates of the circuit

and the notation W = {w1 . . . wm} to denote the wires in the circuit. Let wi.val denotes the value

of the wire when the evaluator evaluates the circuit. The notation ci.wj denotes the circuit ci’s wire

wj . We also use the notation gti.I to denote the gti’s input wires and gti.O to denote its output

wires. |gti.I| denotes the number of inputs wires for gti There are four types of wires in a circuit:

the generator input’s wires, the evaluator input’s wires, the intermediate wires, and the output’s

wires. We use the notations G, E, IN , and OU to denote these wires respectively and I denotes

the union of G and E. During the generation phase, the generator chooses two random strings k0
wi

and k1
wi

(we define them as “encodings”) for each wi ∈ W - one for representing 0, the other for 1.

For each wire, the evaluator is going to obtain only one of these encodings, but it will not know the

real value of the encoding. Because k0
wi

and k1
wi

have identical distributions, the evaluator will not

know what the encodings represent when it gets them. To be more clear, the Table 1 summarizes

the notations above.

Notation Description
C circuit
GT Gates of the circuit
W Wires in the circuit

wi.val Real value of the wire during the running phase
ci.wj The circuit ci’s wire wj
gti.I The gti’s input wires
gti.O The gti’s output wires
|gti.I| The number of inputs wires for gti
G The generator input’s wires
E The evaluator input’s wires
IN The intermediate wires
IO The output’s wires
I The union of G and E

Table 1: Notation

The main difficulty of Yao’s scrambled circuit is how does the evaluator obtain the correct

single encoding for each wire without learning the other encoding. Generally speaking, the tech-

niques required depend on the type of wire. There are three cases: i)the generator input G, ii)the
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evaluator input E, and iii)the intermediate wires and output wires. For the generator input G,

since the encodings is blind for the evaluator, the generator can simply send G to the evaluator. For

the evaluator input E, the evaluator can obtain E by doing oblivious transfer with the generator.

However, the third case is the most involved situation. In the next section, we describe how this is

done.

3.3.1 Permuted-Encrypted-Garbeled-Truth-Table

The problem now becomes given the encodings for the input wires, how does the evaluator obtain

the encodings for the other wires. We use Permuted-Encrypted-Garbeled-Truth-Table(PEGTT )

to achieve this. The generator creates a PEGTT for each gate in the circuit. Using a PEGTT

for a gate and the encodings for the input wires to that gate, the evaluator can obtain the encoding

of the output wire for that gate. Using the PEGTT s, the evaluator thus can obtain the encodings

for all wires in the circuit. In order to explain PEGTT in more detail, we now show how the

PEGTT evolves from a standard truth table using the example of an or-gate(see Figure 1).

w1 w2 w3(w1|w2)
0 0 0
0 1 1
1 0 1
1 1 1

Figure 1: The Standard Truth Table for an or-gate

Instead of using Boolean values in the truth table, the garbled truth table(see Figure 2) uses

the wire encodings. Clearly, the GTT does not solve the problem at hand, because it reveals all

encodings to the evaluator.

The question thus become, how to let the evaluator obtain only a single encoding per wire.

One way to prevent the evaluator from learning more than one encoding in the table is to encrypt

each output encoding by using the corresponding input encoding. As an example of this see Figure

3. For each encoding of w3, the table encrypts it by using x-or from all its entry encodings,

7



w1 w2 w3(w1|w2)
k0
w1

k0
w2

k0
w3

k0
w1

k1
w2

k1
w3

k1
w1

k0
w2

k1
w3

k1
w1

k1
w2

k1
w3

Figure 2: The Garbled Truth Table for an or-gate

Enc
k
w1.val
w1

⊕kw2.val
w2

(kw3.val
w3

). In this case, the evaluator can get a single output encodings only if it

has the entry encodings of the output. We call this version of the truth table an Encrypted-Garbled-

Truth-Table(EGTT ).

w1 w2 w3(w1|w2)
k0
w1

k0
w2

Enck0w1
⊕k0w2

(k0
w3

)

k0
w1

k1
w2

Enck0w1
⊕k1w2

(k1
w3

)

k1
w1

k0
w2

Enck1w1
⊕k0w2

(k1
w3

)

k1
w1

k1
w2

Enck1w1
⊕k1w2

(k1
w3

)

Figure 3: The Encrypted Garbled Truth Table for an or-gate

Given the input encodings the evaluator must know which value to decrypt. In order to do

this, the table should connect the encoding with a bit that indicates the encoding. However, the

problem is that the EGTT will not hide the additional bit of the encoding in the table. In this

case, the evaluator can learn what the encoding represents for according to the additional bit. The

permutation mechanism is used to mitigate this problem. The generator first assigns a permutation

number λi ∈ {0, 1} for each wire wi in the table. Then, the generator creates a table called a

Permuted-Encrypted-Garbeled-Truth-Table(PEGTT ). The table reveals the encodings of Wi.val

with a permutation position Wi.val ⊕ λi to the evaluator. The new table has 2|gt.I| entries. Each

entry is an arrangement of permutation positions for all input wires. The permutation bit will

conceal the meaning of the additional bit from the evaluator, because it is permuted 50% of the

time. To continue our example before, if we assume the permutation numbers are λ1 = 0, λ2 =

1, λ3 = 1, we will get the table shows as Figure 4.
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w1 w2 w3(w1|w2)
0 0 Enck0w1

⊕k1w2
(k1
w3
||0)

0 1 Enck0w1
⊕k0w2

(k0
w3
||1)

1 0 Enck1w1
⊕k1w2

(k1
w3
||0)

1 1 Enck1w1
⊕k0w2

(k1
w3
||0)

Figure 4: The PEGTT for an or-gate

3.3.2 Getting the result

There are two situations after the evaluator evaluates the circuit. If the goal is for the evaluator to

obtain the result, then the generator can reveal the permutation number for the output wires. On

the other hand, if the goal is for the generator to learn the output, then the evaluator can send the

encoding for the output wires to the generator.

3.3.3 Putting all of the details together

There are two parties involved in Yao’s scrambled circuit: the generator which generates the circuit

and the evaluator which evaluates it. X ∈ {0, 1}n denotes the generator’s input and Y ∈ {0, 1}n

denote the evaluator’s input. The output of the circuit is a bit. Now we give the whole protocol

below.

1)The generator secretly assigns two random strings k0
wi

and k1
wi

for each wire wi ∈ W and a

permutation number λwi .

2)The generator generates PEGTTi for each gate {gti : i ∈ [1, n]} in the circuit. We

use [Mgti : {0, 1}|gti.I|] to denote the array of output encodings. For each entry of the table

β1 . . . β`|gti.I|(βi ∈ {0, 1}), the generator sets the output Enc|gti.I|⊕
j=1

k
βj−λj
gti.Ij

(mβ1−λ1,...β`i−λ`i ).

3) For each gi ∈ G, the generator determines its input encoding as kX(i)

gi
. The generator sends

the {PEGTTi : i ∈ [1, n]} and the input encodings kX(i)

gi
to the evaluator.

4)The evaluator gets its input encodings E from the generator by using OT 1
2 . For each wire

ei ∈ E, the two parties run the protocol OT (k0
ei
, k1

ei
;Y (i)). The evaluator will get the {kY (i)

ei
: i ∈

9



[0, |E| − 1]} at the end of the protocol.

5)The evaluator evaluates the circuit gate by gate according to the PEGTT s and the input

encodingsG andE. For each gate gti, the evaluator first obtains all input wire’s encodings {gti.Ij :

j ∈ [0, |gti.I| − 1]} and then searches the PEGTTi to get the output encoding gti.O. Finally, the

evaluator can get all of the wires’ encodings in the circuit. The result of the circuitOU is the output

from the last gate.

3.4 Building Block

We have several building blocks using to generate our protocol. These are PEGTT generation

function, PEGTT evaluation function, the circuit generation function, and the circuit evaluation

function.

3.4.1 PEGTT generation function and evaluation function

By giving all input encodings of wires, the PEGTT generation building block can generate a

PEGTT . It is represented as PEGTTGen(Λ, {kiwj : i ∈ [0, p − 1], j ∈ [1, `]}, λO, [M :

{0, p − 1}`]). Λ ∈ {0, p − 1}` denotes a permutation number array of ` length. In addition,

{kiwj : i ∈ [0, p − 1], j ∈ [1, `]} denotes the input encodings of the table while [M : {0, p − 1}`]

denotes the array of output encodings. Furthermore, let m denote an element of M . The table

is created as following: for each entry of the table β1 . . . β`(βi ∈ [0, p− 1]), the protocol gives a

value Enc⊕̀
i=1

k
βi−λi
wi

(mβ1−λ1,...β`−λ` ||mβ1−λ1,...β`−λ` .val ⊕ λO). At the end of the function, it returns

a PEGTT that has been generated.

We use the notation PEGTTEval(tb; kwi ||{ui : i ∈ [0, `]}) to denote the PEGTT evaluation

function for the table tb. For each wi, uwi ∈ [1, p − 1] denotes permutation position that was

revealed to the function and ωi = (uwi + λi)mod p. Given the table tb and input encodings

{kwi : i ∈ [0, `]}, the function outputs mω1,...ω`||mω1,...ω` .val ⊕ λO.
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We now show how to use these functions by giving an example to generate a PEGTT for

and-gate and evaluate the table. Assume there are two input wires and one output wire with two

encodings for each of them, k0
0, k

1
0, k

0
1, k

1
1, k

0
2, k

1
2 . The permutation numbers are 1, 0, and 1. We

create the and-gate PEGTT tband (see Figure 5) by using function PEGTTGen(1, 0; k0
0, k

1
0, k

0
1,

k1
1; 1; k0

2, k
1
2).

w0 w1 w2(w0andw1)
0 0 Enck10⊕k01(k0

2||1)

0 1 Enck10⊕k11(k1
2||0)

1 0 Enck00⊕k01(k0
2||1)

1 1 Enck00⊕k11(k0
2||1)

Figure 5: tband

The tband can be evaluated by using function PEGTTEval. To help clarify how this function

works we give an example of PEGTTEval( tband; k1
0||0, k1

1||1). The evaluator first gets two

permute numbers 0, 1, which can indicate the evaluator to lookup the row 01. Then, the evaluator

decrypts the message that he got in the first step by using the keys k1
0, k

1
1 and returns k1

2||0 which

is the result.

3.4.2 Circuit generation function and evaluation function

Given a type of circuit and the encodings for the input and output wires, the circuit generation

function returns a scrambled circuit that uses these encodings. We use CircuitGen(TYPE; I0,

I1 . . . In; λI0 . . . λIn ; OU0, OU1 . . . OUr; λOU0 . . . λOUr) to denote the circuit generation function.

The parameter TY PE corresponds to a description of the circuit, such as “less than”, “greater

than”, “equal”. λ denotes permutation number. At the beginning of the protocol, CircuitGen

creates all gates GT and intermediate wires IN . Then, it chooses encodings kIN for all IN and

permutation numbers. Then, it calls PEGTTGen to generate a PEGTT for each GT . Finally,

the function returns the whole circuit that was generated.

Given a scrambled circuit and encodings for the circuit’s input wires, the circuit evaluation

11



function returns encodings for the output wires. It is represented asCircuitEval(circuit; ki0||i0.val

⊕ λi0 , . . . kin||in.val⊕ λin) where i0, . . . in are the input encodings. These input encodings should

follow the patterns that were determined before the table had been generated.

4 New tool: Chained PEGTT

In this section, we introduce a variation of PEGTT to deal with a circumstance that the server and

the client engage in n PEGTTs where the later PEGTT uses the same encodings as the previous

one but has an extra encoding. That is the server inputs {(λ, ei0, ei1) : i ∈ [1, 1]}, {(λ, ei0, ei1) :

i ∈ [1, 2]},. . ., {(λ, ei0, ei1) : i ∈ [1, n]} and the message sets M , which are [M1 : {0, 1}1],

[M2 : {0, 1}2],. . ., [Mn : {0, 1}n]; the client inputs {(λ ⊕ vi, eivi) : i ∈ [1, 1]},. . ., {(λ ⊕ vi, eivi) :

i ∈ [1, n]} to get the corresponding messages. Another requirement is the server must generate all

look-up tables before it interacts with the client.

By using the protocol form the subsection 3.4.1 to deal with n successive tables, the server’s

computational cost is O(n2n) and the client would have to perform O(n2) operations. However,

by using the Chained PEGTT which is the new tool in this section, the server’s computational cost

can be reduced to O(2n) and the client’s computational cost can be reduced to O(n). We will give

the full protocol and a brief analysis after the protocol is given. The main idea of Chained PEGTT

is the server generates a n+ 1 set of keys K = {K0, K1, . . . , Kn}, where Kj = {kji : i ∈ {0, 1}j}

and then concatenates each kji with M j
i to generate the new messages M̂ j

i = M j
i ||k

j
i . Also, the

messages M̂ j+1
i0 and M̂ j+1

i1 have been encrypted by key kji with the appropriate encodings. After

look up the jth Chained PEGTT, the client can learn M̂ j
i which includes kji . The key thing in here

is kji is a compressed form of the encodings e1
i(1)
, . . . , ej

i(j)
in that the client will be able to learn kji

if and only if it has e1
i(1)
, . . . , ej

i(j)
. The client can do a single pseudorandom function evaluation in

the (j + 1)th table instead of doing the j evaluations. Following the standard definition in [13],

we have the pseudorandom function’s definition “ Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an
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efficient, length-preserving, keyed function. We say that F is a pseudorandomfunction if for all

probabilistic polynomial-time distinguishers D, there exists a negligible function negl such that:

|Pr[DFk(.)(1n) = 1] − Pr[Df(.)(1n) = 1]| ≤ negl(n) where k ← {0, 1}n is chosen uniformly at

random and f is chosen uniformly at random from the set of functions mapping n-bit strings to

n-bit strings.”

In figure 6, we show the protocol to generate the Chained PEGTT. The input is encodings and

permuted numbers with messages. After running the protocol, the server can generate all n lookup

tables.

1. For ` = 0 to n create a key set K` = {k`i : i ∈ {0, 1}`} where each k`i is
chosen uniformly from {0, 1}κ.

2. For j = 1 to n do the following steps:
(a) For all i = i1 · · · ij ∈ {0, 1}j , the server chooses ri ← {0, 1}κ and

computes i′ = i′1 · · · i′j = i1 ⊕ λ1|| . . . ||ij ⊕ λi. The server also
creates a message M̂ j

i = M j
i′||k

j
i′ . Then the server then computes

Cj
i = (ri, Fej

i′
j

(ri)⊕Fkj−1
h

(ri)⊕ M̂ j
i ) where F is a pseudorandom func-

tion mapping {0, 1}κ × {0, 1}κ → {0, 1}m+κ and h = i′1 · · · i′j−1.
(b) Create table Tj = {Cj

` : ` ∈ {0, 1}j}.
3. Return the message k0

⊥, T1, . . . , Tn.

Figure 6: GENTABn({(λi, ei0, ei1) : i ∈ [1, n]}, {{Mj
i : i ∈ {0, 1}j} : j ∈ [1, n]}, 1κ)

We will give an example to clarify the steps. Assume n = 2 and the server has input {(λ1, e
1
0, e

1
1),

(λ2, e
2
0, e

2
1), M0, M1, M00, M01, M10, M11}. Also, assume that λ1 = 0 and λ2 = 1. At first, the

server will generate three sets of keys from {0, 1}κ; denote these by K0 = {k0
⊥}, K1 = {k1

0, k
1
1},

and K2 = {k2
00, k

2
01, k

2
10, k

2
11}. Then, the server create two tables. The first one is an ordered set

{(r0, Fk0⊥(r0)⊕ Fe10(r0)⊕ (M1
0 ||k1

0)), (r1, Fk0⊥(r1)⊕ Fe11(r1)⊕ (M1
1 ||k1

1))}. The second table will

be the ordered set {(r00, Fk10(r00)⊕Fe21(r00)⊕(M2
01||k2

01)), (r01, Fk10(r01)⊕Fe20(r01)⊕(M2
00||k2

00)),

(r10, Fk11(r10) ⊕ Fe21(r10) ⊕ (M2
11||k2

11)), (r11, Fk11(r11) ⊕ Fe20(r11) ⊕ (M2
10||k2

10))} (notice that the

order has been permuted here, because λ2 = 1).

In the table lookup phase, the client will have the message k0
⊥, T1, . . . , Tn and it will sequen-

13



tially obtain the permuted encodings for the messages. In Figure 7 we describe the details of the

protocol for the jth lookup (where the user will learn a message and a key).

1. Let ` = (v1 ⊕ λ1)|| · · · ||(vb ⊕ λb) and lookup C` = (r`, D`) from table Tj .
2. Compute M̂` = D` ⊕ Fkj−1

v1···vj−1
(r`) ⊕ Fejvj

(r`). Parse M̂` into M j
v1...vj

and

kjv1...vj and return these values.

Figure 7: LOOKUPj(Tj , kj−1
v1···vj−1

, {(v` ⊕ λ`, e`v` ) : ` ∈ [1, j]})

Retuning to our example, suppose that v = 01, and thus the client should obtain M1
0 and M2

01

from the first and second table lookup respectively. In the first table lookup the client has k0
⊥,

v1⊕ λ1 = 0, and e1
v1

= e1
0. The client takes entry 0 in T1 (i.e., (r0, Fk0⊥(r0)⊕Fe10(r0)⊕ (M1

0 ||k1
0)))

and computes M1
0 ||k1

0 , which is the correct message. Now in the second table lookup the client

uses k1
0 and v2⊕λ2 = 0 and e2

v2
= e2

1 to decrypt entry 00 in the table T2. That is, the client decrypts

(r00, Fk10(r00)⊕ Fe21(r00)⊕ (M2
01||k2

01)) to obtain M2
01||k2

01, which is what is expected.

In Chained PEGTT server needs to perform onlyO(1) PRF per table entry. Since there are only

O(2n) entries in all n tables, the server needs to perform O(2n) computation. Furthermore, the

client only performs O(1) PRF evaluations per lookup, and thus performs only O(n) computation.

We will give a full proof of security for this primitive in the section 6.2.

5 Private Database Search Protocol

Consider the following problem: A client has a value x ∈ {0, 1}b and a server has a set S =

{s1, . . . , sn} where each si ∈ {0, 1}b. The goal of the protocol is for the client to learn whether

x ∈ S. Furthermore, the server should not learn information about x, except whether x ∈ S or

x 6∈ S.

In this protocol, we assume that the server knows S ahead of time and has the ability to do

some precomputation before the query from the client. Also, we assume that the server can send

one message to client before the query is available. Perhaps the server does precomputation for
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many protocols and sends the information to the client on a media such as a DVD. The naive

solution for this problem is to create a comparison circuit for each record and then do a linear

search over all circuits during the query time. The goal of the our protocol is to minimize the

amount of time required to run the protocol after this precomputation.

Before describing the detailed protocol, we describe the intuition behind the protocol. The first

step is to create a binary search tree whose leaf nodes store the values of the set S. The client

and server engage in a standard search on this tree for the client’s value. The difficulty is that the

scheme must hide the search path from both the server and the client, because revealing this path

to the server would reveal an interval that contains the query and revealing this path to the client

would reveal the rank to the client. These pieces of information are not revealed by the result

alone, and hence are extra information. At each level of the tree, the client and the server use a

scrambled circuit to compute an intermediate result. Specifically at non-leaf level the circuit is a

comparison circuit and at the leaf level it is an equality circuit. The client’s input encodings are the

same for each of these circuits, because the client’s value in the search does not change. However,

the encodings for the server’s input depend upon the search path. For each level of the tree, the

server stores all its input encodings into one PEGTT during the precomputation phase. In order to

hide the searching path from the server, the server should not access any wire’s encodings during

the query phase. Hence the server sends all PEGTTs to the client before the query. On the other

side, we can use the PEGTTs and circuits to hide real values and positions from the client.

One example has been showed in the figure 8. Assume the server has inputs 3, 7, 14, 22, 39,

43, 48, 51 and generates a binary search tree based on that. The permutation numbers are 1, 0,

0. The client’s input is 22. For each level of the tree, the client use his input encoding compare

with the server’s input encoding getting from the previous PEGTT. It’s a binary tree searching(the

searching path has been showed in the figure), but encodings and permutation numbers help us

hide a lot of information. Due to the full protocol is given next, we do not explain all the details in

here.
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Figure 8: Example of our protocol

5.1 Protocol

The server inputs [S : {0, 1}n] where each si ∈ {0, 1}b. On the other hand, the client inputs x. At

the end of the protocol, the server outputs null and the client outputs 1 if x ∈ S, 0 otherwise.

Precomputation phase:

1. The server builds a binary search tree T over the set S = {s1, . . . , sn}, assuming n = 2h.

Let t denote the root of tree T , and define t`1...`k0 to be the left child of t`1...`k , and t`1...`k1 to be the

right child. Also define v`1...`k to be the value at node t`1...`k .

2.For 0 ≤ i ≤ h and 0 ≤ j ≤ b, the server generates circuits ci and random bit strings

δej ∈ {0, 1}2ρ+1, δci.gj ∈ {0, 1}2ρ+1, and δci.ou ∈ {0, 1}2ρ+1. Let δ.λ denote δ(2ρ) and δ[i] denote

δ[i,ρ] where i ∈ {0, 1}.

3.For each non-leaf level, i, of T , the server generates a less-than circuit using encodings and

permutations from previous step. That is, for i ∈ [0, h), ci = CircuitGen(LT, δci.g0 , . . . , δci.gb ,

δe0 , . . . , δeb , δci.ou).
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4.For the leaf level of T , the server creates an equality circuit using encodings/permutations

from previous step, that is ch = CircuitGen(EQ, δch.g0 ,. . ., δch.gb , δe0 ,. . ., δeb , δch.ou).

5. For each non-leaf level, i, of T , the server generates transition tables, TransTi, which

allow the client to obtain the encodings of the server’s inputs for the next circuit. Let Mk
def
=

{δck.g0 [v
(0)
`1...`k

], . . . , δck.gb [v
(b)
`1...`k

]} denote the encoding array of the server’s input at level k. The

server encrypts the encodings with permutation positions by using all encodings on the search

path. For level i ∈ [1, h], the server calls PEGTTGen(δc0.ou.λ,. . . δci−1.ou.λ,δc0.ou[0], δc0.ou[1],. . .

δci−1.ou[0],δci−1.ou[1], [Mi : {0, 1}i]) to generate TransTi.

6. The precomputation message is all transition tables TransT and the circuits C. Also,

the server sends its first circuit input encodings with permutation positions to the client, which is

δc0.g0 [v
(0)]||v(0) ⊕ δc0.g0 .λ,. . ., δc0.gb [v

(b)]||v(b) ⊕ δc0.gb .λ. As a short notation, we use sqji to denote

the server’s input encoding for the jth wire in the circuit i with permutation position during query

phase. For example, the former formula can be written as sq0
0, . . . , sq

b−1
0 .

Query phase:

1. The client gets encodings of its input by using OT 1
2 . For each wire ei ∈ E, the two

parties run the protocol OT (δei [0]||0 ⊕ δei .λ, δei [1]||1 ⊕ δei .λ; x(i)). The evaluator will get the

{δei [x(i)]||0⊕δei .λ : i ∈ [0, b−1]} at the end of the protocol. As a short notation, let cqj denote the

client’s input encoding at the jth wire concatenating with permutation position during the query

phase, and also oqi denote the ci’s output encoding concatenating with permutation position during

the query phase.

2. For 0 ≤ i < h, the client calls the function CircuitEval(ci, sq0
i ,. . ., sqb−1

i , cq0,. . ., cqb−1)

to get output oqi. Then, the client calls PEGTTEval(TransTi+1, oq0, . . . , oqi) to get the server’s

input for ci+1, which is {sq0
i+1, . . ., sqb−1

i+1}.

3. For the level h, the client calls CircuitEval(ch, sq0
h,. . ., sqb−1

h , cq0,. . ., cqb−1). The output

of the last circuit will be the final result.

Now we do a complexity analysis for our protocol. Recall that we have n values in the dataset
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S, and the number of bits for each value is b. For the server’s operations in the precomputation

phase, we have O(log n) circuits each of size O(b) and O(n) PEGTT tables where each entry is

of size O(b). So in the precomputation phase, the computational complexity is O(nb) and com-

munication complexity is O(nb). In the query phase, our protocol has O(b) communication com-

plexity and O(b) modular exponentiation for the oblivious transfer. The computational complexity

is O(b log n) by using binary search tree. The number of rounds is O(1). Clearly, comparing with

the runtime linear searching model, there is not big increase of the cost during the precomputation

phase. However, the computational time for the client during the query phase has been reduce into

sublinear and this is a significant improvement.

5.2 Other Problems

This protocol can be modified to solve some other interesting problems. In this subsection, we will

define the problems and give some details to solve it based on the protocol in the subsection 5.1.

1. Message lookup: A client has a search term and a server has a set of (term, message) pairs.

The intent of this protocol is that the client learns the message corresponding with his term. More

formally, the client has a value x ∈ {0, 1}b and the server has a set S = (s1, m1), . . ., (sn, mn)

where each si ∈ {0, 1}b, and mi is plaintext. At the end of the protocol, the client gets mi if

x = si, and gets nothing otherwise. Let MG to denote the set of server’s plaintext messages

with ⊥ in between, which is ⊥, m1, ⊥, m2, ⊥, . . ., ⊥, mn. The modification of this variation

is to add the PEGTTh+1 after the step 5 in the precomputation phase. That is, the server calls

PEGTTGen(δc0.ou.λ,. . . δch.ou.λ,δc0.ou[0], δc0.ou[1],. . . δch.ou[0],δch.ou[1], MG).

2. The rank of query: A server has many values and a client wants to learn the rank of his

query. More formally, the client has a value x ∈ {0, 1}b and the server has a set S = {s1, . . . , sn}

where each si ∈ {0, 1}b. The goal of the protocol is, at the end of the protocol, the client learns

the rank of x in S. The high level idea is that the server first sorts all his inputs and pads a ∞

after all the numbers. Then, the server ranks all the numbers and duplicate the ranks to get R. For
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example, if the rank is 1, 2, 3, 4, R would be 1, 1, 2, 2, 3, 3, 4, 4. This problem can be solved

similarly as how we did in variation 1. At the level h+1, the server calls PEGTTGen(δc0.ou.λ,. . .

δch.ou.λ,δc0.ou[0], δc0.ou[1],. . . δch.ou[0],δch.ou[1], R).

3. One dimensional query: A client has two values and a server has a set of values. The client

wants to know how many values are between his two values in the server’s set. More formally,

the client has values x ∈ {0, 1}b and y ∈ {0, 1}b, and the server has a order set S = {s1, . . . , sn}

where each si ∈ {0, 1}b. Assume si−1 < x ≤ si and sj−1 < y ≤ sj , the output is |i− j|. For this

problem, the server first generate two set of encodings to represent i and j. Let R1 and R2 denote

two rank encoding sets for S. The server runs the protocol which is deal with the ranking problem

two times. The only difference is that, instead of using R, the server encodes R1 and R2 at the

level h + 1. Then, the server should generate a minus circuit according to R1 and R2’s encoding

representations. During the evaluation time, the client executes the rank search query two times

and then pass the result encodings to the minus circuit to get the result.

4. Two dimensional range query: The server has a set S ∈ {Z ∗ Z}n , and the client has two

points P (a, b) and Q(c, d) in Z ∗ Z. The client wants to know how many points in the rectangle

range between P and Q. We initially focus on how to get the number of points between (0, 0) and

one input point q(a, b) first, because if we can do this it can be easily changed to support queries

between two points. As an example of this see Figure 9. Assume the client has two points (a, b)

and (c, d). The client can respectively get the number of points between (0, 0) and (a, b), (0, 0) and

(c, b), (0, 0) and (a, d), (0, 0) and (c, d) first. We use the notation A, B, C, and D to denote these

numbers of points. Then, the result will be D - C - B + A.

Now we give a high-level protocol for two dimensional range query:

(1) The server divides the two dimensional coordinate into
√
n ∗
√
n parts (boxes), where each

chunk has
√
n points. We define “box” as a rectangle part in the coordinate and “chunk” as a bunch

of boxes have the same x-coordinate or y-coordinate(see Figure 10). We use notations Cx and Cy

to denote sets of encodings for chunk in x-coordinate and y-coordinate. The server assigns each
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Figure 9: Two dimensional range query

box b an unique number and generates an encoding b.id for b. For each point p ∈ S, the server

generates encodings p.POS to represent its position. We use the notation p.x and p.y to denote

x-coordinate and y-coordinate’s value respectively.

Figure 10: Box and chunk

(2)The server generates two binary search trees Tx and Ty based on the Cx and Cy by using our

protocol.

(3)We use b.num to denote the number of points less than or equal to the box b. The server

generates a two dimensional permute encryption table Ts. For point p in box b, the server encrypts

b.num by using Cp.x
x and Cp.y

y .

(4)If p in box b, we use notation p.box to denote b.id. For all points p in chunks Cx and Cy, the

server creates sets Cx.T and Cy.T where each element has tuple p.box, p.POS

(5)The server send Tx, Ty, Ts, Cx.T and Cy.T to the client.

(6)Assume the client inputs q(a, b). He does OT with the server to get q.box and encodings of

a and b.

(7)The client respectively searches Tx and Ty and then gets two encodings Kx and Ky
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(8)The client searches Ts by using Kx and Ky. At the end of this step, the client gets the value

Vs which represents the number of points smaller than the box of p. Also, the client gets 2
√
n

encoding tuples Cx.T [p.chunk] and Cy.T [p.chunk].

(9)For x coordinate, the client passes encodings of its input and Cx.T [p.chunk].point.POS to
√
n comparison circuits.

(10)For y coordinate, the client does the same operation. In addition, the client passes q.box

with Cy.T [p.chunk].point.box to a not-equal circuit in order to ignore the overlap between the two

chunks.

In this protocol, the work of the client will be reduced to O(
√
n(b + log n)). If we do the first

three steps over Cx and Cy recursively, the running time will be O(log n log log n), and the space

cost will be O(n log n log log n).

5. Server with small changes: The current solutions only work for static datasets, because the

server is not involved at the query phase. It is possible to extend the protocols to support datasets

with a small number of changes. Let’s reconsider the “existence problem” before. Assume the

server already generated the data D and sent it to the client. Then, the server makes small changes

to the dataset, such as removing the data setR or inserting the data set I . The server generates only

scrambled circuits for the new data instead of generating a new binary search tree for the whole

dataset. At the query phase, the client evaluates the original dataset by using initial protocol and

then does linear computation for the new scrambled circuits. If the query is in the set ofR the client

removes it from the result. If the query in the set of I then the client adds it to the result. Assume

there are |R| + |I| ≤ ε changes from the server, the computational complexity of new circuits at

the query phase will be linear of ε. Hence, the computational complexity is O(b log n+ εb) which

is O(b log n) if the ε is small.
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6 Security Analysis

In this section, we will prove that our protocol is secure in the honest-but-curious adversary model.

First, we give the definition of some terminology that we use in this section. We define a function

f is negligible, if for all polynomial algorithm p there exists a large number N and for all n > N ,

it holds f(n) < 1/p(n). LetX = {Xi}i∈N and Y = {Yi}i∈N be distribution ensembles. We sayX

and Y are computationally indistinguishable, denotedX
c≡ Y , if for every probabilistic polynomial

time distinguisher D and a significantly large n ∈ N , |Pr[D(Xn) = 1] - Pr[D(Yn) = 1]| is

negligible in |n|. By following the standard definition, we use viewΠ
i (x; y) to denote the view of

the party i ∈ {client, server} when they execute the protocol Π on the inputs of x and y. (In the

rest of this paper, we will use the short notation c and s to denote client and server.) The notation

viewΠ
i (x; y) (i ∈ {c, s}) is equal to {x, ri,mi

1, . . . ,m
i
t}, where ri is i’s random tape and mi

j is the

jth message received by the party i. We define a protocol Π is secure between two parties if there

exists a polytime simulators Simi (i ∈ {c, s}), such that {Simi(x, fi(x, y))} c≡ {viewΠ
i (x; y)},

where x and y are those two parties’ respective inputs.

6.1 Our protocol

Our protocol is composed of the subprotocols: oblivious transfer, scramble circuit evaluation, and

PEGTT. Let Π̂ denotes the protocol where oblivious transfer, scramble circuit evaluation, and

PEGTT have been replaced with calls to a trusted third party (TTP). For example, when oblivious

transfer happens, instead of engaging the OT protocol, the client and the server both send their

inputs to the TTP who sends the outputs back to the chooser. We will show that there exists a

simulator with our protocol’s inputs is computationally indistinguishable with the view of Π̂ for

the client and the server. Then, we can prove our protocol is secure based on the composition

theorem which states that if a protocol is secure when the individual protocols use a TTP then the

protocol that results from replacing the TTP versions with secure versions is also secure[14].
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The server’s inputs of our protocol are a set S = {si ∈ {0, 1}b : i ∈ [1, n]} and the output is⊥.

The client’s input is x and the output is a boolean value b, such as whether x ∈ S. Now, our goal

is to build a simulator Sims where {Sims(S,⊥)} c≡ {viewΠ̂
s (x;S)} and a simulator Simc where

{Simc(x, b)}
c≡ {viewΠ̂

c (x;S)}.

1. Initialize encoding array EN [h][`]
2. For j = 1 to h do the following steps:

(a) For i = 1 to `, chooses EN [j][i]← {0, 1}κ
3. Return EN .

Figure 11: Simc(x, b)

For the server side, the creation is trivial, because the server cannot get any information in our

protocol. For the client side, assume the size of input bit is `. The client gets the client encodings

C (|C| = `) and server encodings S1 (|S1| = `) at the first level of the circuits. Then, the client gets

a new output encodings by evaluating the circuit. For all level i < h, the client can get server’s

input encodings from PEGTT and output encodings from circuit. At the leaf level, the client can

only get output encodings from the circuit. Therefore, viewΠ̂
c (x;S) is an two dimensional array

of encoding, which length is ` ∗ 2h. We create a Simc that is given in Figure 11 (We assume

that the size of server’s inputs is known by the client). Clearly, all encodings in {Simc(x, b)}

and {viewΠ̂
c (x;S)} are uniformly distribution and their size is equal. We can create such Simi

(i ∈ {c, s}), thus if all subprotocols in Π̂ are secure, then so is our protocol.

6.2 Chained PEGTT

In this subsection, we give a formal proof of security of Chained PEGTT. The generator’s in-

puts are a sequence of encoding with permuted numbers and messages, which are {(λi, ei0, ei1) :

i ∈ [1, n]}, {{M j
i : i ∈ {0, 1}j} : j ∈ [1, n]} and the output is ⊥. The evaluator’s inputs

include all input encodings with the permutation bit and the k value. Let n denote the level

of the tree. The evaluator’s inputs are {vi ⊕ λi, e
i
vi
, ki−1 : i ∈ [1, n]}. The evaluator’s out-
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put at level i includes the output message m̂i and a k value ki, which is the same as the input

k value at the next level. In order to prove the security, our goal is to create a simulator in

the generator’s side which can hold Simgen({(λi, ei0, ei1) : i ∈ [1, n]}, {{M j
i : i ∈ {0, 1}j} :

j ∈ [1, n]},⊥)
c≡ viewChainedPEGTT

gen ({(λi, ei0, ei1) : i ∈ [1, n]}, {{M j
i : i ∈ {0, 1}j} : j ∈

[1, n]}; {vi ⊕ λi, e
i
vi
, ki−1 : i ∈ [1, n]}). Also, in the evaluator’s side, we should create a sim-

ulator that Simeval({vi ⊕ λi, e
i
vi
, ki−1, m̂i : i ∈ [1, n]}) c≡ viewChainedPEGTT

eval ({(λi, ei0, ei1) : i ∈

[1, n]}, {{M j
i : i ∈ {0, 1}j} : j ∈ [1, n]}; {vi ⊕ λi, eivi , k

i−1 : i ∈ [1, n]}).

1. For j = 1 to n, the simulator do the following steps:
(a) Generate a number i′ ∈ {0, 1}j where i′(i) = vi ⊕ λi and ri′ ← {0, 1}κ.

Cj
i′ = (ri′ , Fki−1

(ri′)⊕Fei(ri′)⊕ m̂i) where F is a pseudorandom func-
tion mapping {0, 1}κ × {0, 1}κ → {0, 1}m+κ.

(b) For all i = {0, 1}j and i 6= i′, the simulator creates ri ← {0, 1}κ and
and a random number r ← {0, 1}m+κ. Then, it computes Cj

i = (ri, r).
(c) Create table Tj = {Cj

` : ` ∈ {0, 1}j}.
2. Return the tables T1 . . . , Tn.

Figure 12: Simeval({vi ⊕ λi, eivi , ki−1, m̂i : i ∈ [1, n]})

For the generator’s side, the creation is trivial. That’s because the generator does not get infor-

mation from the Chained PEGTT protocol. For the evaluator’s side, we create a simulator Simeval

that outputs the lookup tables(see Figure 12). Although the view of evaluator includes the encod-

ings, it is not important because the simulator’s inputs includes all those information. Now, if we

prove the tables that are created by Simeval are computationally indistinguishable with the tables

in real protocol’s view, the protocol is secure.

Let n denote the number of tables in the view of real protocol and P0 denote the real protocol.

In P0, the evaluator knows n of the k-values and encodings. For the further definition, let Pi(i ∈

[0,M ]) denote the protocol where i of the PRFs (for unknown encodings) have been replaced with

a random function (each unique encoding uses a different random function). Let M denote the

number of encodings/keys that evaluator doesn’t know in P0. By using this definition, PM is a

protocol that only uses random functions for unknown encodings.
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We claim that viewPi
eval

c≡ viewPi+1

eval . The only difference between these two protocol, is that a

single PRF has been replaced with a random function. If these two distributions were distinguish-

able, then it would be possible to distinguish a PRF from a random function. That is if we are

given oracle access to either a PRF or a random function, then we can generate either viewPi
eval or

viewPi+1

eval . Hence, if we could distinguish these two views, then we could distinguish the oracle as

a random function of a PRF.

We also claim that viewPM
eval

c≡ Simeval. At places where the evaluator does not know the

encodings, the PRFs in PM have been replaced with a random function. The tuples in the table

corresponding to these entries in PM take the form (r, f(r)⊕X) where r ← {0, 1}κ is a randomly

chosen value, f is a random function, and X is some other value (it could be based on a a PRF

or another random function). The probability that we have a protocol to distinguish viewPM
eval and

Simeval is Pr[Dist] = Pr[Dist|Dup] · Pr[Dup] + Pr[Dist|Dup] · Pr[Dup] ≤ Pr[Dup] +

Pr[Dist|Dup] where Dup means duplication of r-value (the first term in the tuples) happens. Let

ri and rj denote r-values where i 6= j, we can get Pr[Dup] =
⋃
i 6=j

Pr[ri = rj] ≤
∑
i 6=j

Pr[ri = rj].

Since Pr[ri = rj] = 1/2κ, Pr[Dup] = n2/2κ where n is in the order of entries. Our assumption

is n is a polynomial order in the security parameter κ. Clearly, Pr[Dup] is negligible. According

to the definition of the random function, if r-values in all of these tuples are unique, then f(r)

is a random value. It is known in the folklore that a random value XORed with anything is a

random value. Hence if the r values are all unique, viewPM
eval and Simeval are identically distributed,

which refers to Pr[Dist|Dup] = 1/2. Therefore, Pr[Dist] ≤ Pr[Dup] + Pr[Dist|Dup] =

1/2 + negl(n).

Combining these two claims and the fact that M is polynomial in the size of the inputs, with a

standard hybrid argument implies that viewPM
eval

c≡ Simeval.
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7 Experiments

In this section, we present two experiments. One is the performance comparison between the

naive scheme (see section 5) and our protocol in the same input bit size. The other is to show

the performances of our protocol in different input bit size. The experiments are on a Intel(R)

Core(TM)2 Duo CPU E6750 @ 2.66GHz 2.67GHz CPU and 2.00 GB RAM. The operating system is

Windows7 Enterprise (x64). The implementations are written in Java. We implement the protocols

solving the point existence queries problem, which is the server inputs a set of numbers S and the

client inputs a number q to learn whether q ∈ S.

For the first experiment, we varied server’s input size form 100 to 3000 in step of 100. For each

input size we run each experiment 20 times and report the mean performance. The bit size of each

input number is 16.

Figure 13: Precomputation time(Naive vs Ours)

Precomputation time (cf. Figure 13). Our experiments shows the naive scheme costs linear

time in the precomputation phase. Since only little time is needed in small input size by using our

scheme, the performance for our scheme is not very obvious here. Clearly, our scheme is much

faster than naive scheme in the precomputation phase. The reason is that our scheme generates

less circuits than naive scheme and generating Chained-PEGLT is faster than generating circuits.

Communication size (cf. Figure 14). Both schemes require linear communication size. The
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Figure 14: Communication size(Naive vs Ours)

data jumps in certain number of input for our scheme. That’s because the size of message depends

on the height of the search tree.

Figure 15: OT time(Naive vs Ours)

OT time (cf. Figure 15). There is no big difference between our scheme and naive scheme in

OT time, because the client does same OT in both scheme for its input.

Evaluation time (cf. Figure 16). Our scheme significantly improves the performance in eval-

uation time. In the second experiment, the evaluation time for our solution is still under 0.004

seconds even server’s input size increases to 500000. We expect the naive solution will spend 500

seconds if the number of inputs is 500000.
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Figure 16: Evaluation time(Naive vs Ours)

In the second experiment, we varied server’s input size form 5000 to 515000 in step of 10000.

For each input size we run each experiment 20 times and report the mean performance. Since

the 16 bits experiment consumes approximately double RAM space than 8 bits, it stopped when

the number of input increased to 245000. The goal of this experiment is to show our scheme’s

performance in different input bit size(8 bits and 16 bits).

Figure 17: Precomputation time(8bits vs 16bits)

Precomputation time (cf. Figure 17). The performance shows that the 16-bit’s precomputa-

tional time is little over bigger than the double of 8-bit’s. That is because 16-bit not only double

the gates but also some “extra” gates needed if the circuits became larger.
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Figure 18: Communication size(8bits vs 16bits)

Communication size (cf. Figure 18). The same reason as in the precomputation time, 16-bit’s

communication size is little bigger than the double size of 8-bit’s.

Figure 19: OT time(8bits vs 16bits)

OT time (cf. Figure 19). 16-bit’s OT time is two times of the 8-bit’s, because the work is

doubled.

Evaluation time (cf. Figure 20). Our scheme performs well in large scale of the input number.

The data has several jumps in the figure 20, that is because errors influence a lot if the time scale

is only in milliseconds. Even this, our experiments still clearly shows the different performance

between 8-bit and 16-bit.

29



Figure 20: Evaluation time(8bits vs 16bits)

8 Summary/Future work

In this thesis, we present a private database search protocol in precomputational model which is

allow the data owner can do precomputation at the head of the query time. Our goal is to minimize

the query time to sublinear and let the precomputation time is still in linear. We also present several

protocols to deal with various problems based on this model. Several interesting avenues for future

work include:

1) Currently, the protocol only works for the honest but curious model. Extending the protocol

to the malicious adversary model would be very interesting.

2) A limitation of the current approach is the precomputation process must be done for each

query. It would be interesting if the precomputation information can be used in multiple queries.
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