Int J Softw Tools Technol Transfer
DOI 10.1007/s10009-015-0397-7

@ CrossMark

TACAS 2013

Synthesis of circular compositional program proofs via abduction

Isil Dillig! - Thomas Dillig! - Boyang Li*> - Ken McMillan® - Mooly Sagiv*

© Springer-Verlag Berlin Heidelberg 2015

Abstract This paper presents a new technique for synthe-
sizing circular compositional proofs of program correctness.
Our technique uses abductive inference to decompose the
proof into small lemmas (i.e., compositionality) and proves
that each lemma is not the first one to fail (i.e., circularity).
Our approach represents lemmas as small program fragments
annotated with pre and post-conditions and uses differ-
ent tools to discharge each different lemma. This approach
allows us to combine the strengths of different verifiers and
addresses scalability concerns, as each lemma concerns the
correctness of small syntactic fragments of the program. We
have implemented our proposed technique for generating cir-
cular compositional proofs and used four different program
analysis tools to discharge the proof subgoals. We evalu-
ate our approach on a collection of synthetic and real-world
benchmarks and show that our technique can successfully

This work is supported in part by NSF CAREER Award 1453386 and
DARPA #FA8750-12-2-0020.

X Isil Dillig
isil@cs.utexas.edu

Thomas Dillig
tdillig@cs.utexas.edu

Boyang Li
bli01 @email.wm.edu

Ken McMillan
kenmcemil @ microsoft.com

Mooly Sagiv

msagiv@acm.org
1" UT Austin, Austin, USA
2 College of William and Mary, Williamsburg, USA
3 Microsoft Research, Redmond, USA

Tel Aviv University, Tel Aviv, Israel

Published online: 19 August 2015

verify applications that cannot be verified by any individual
technique.

Keywords Program verification - Abductive inference -
Circular compositional reasoning

1 Introduction

Different program verifiers have different limitations. For
example, some may fail to prove a property because they use a
coarse abstraction of the program semantics. In this category,
we find abstract interpreters and verification condition gener-
ators, which require the property to be proved to be inductive.
Others model the program semantics precisely, but often do
not scale well in practice. In this category, we find model
checkers and inductive invariant generators. To accomodate
the limitations of program verifiers, a classical approach is
synthesizing compositional proofs. The idea is to decompose
the correctness proof of the program into a collection of lem-
mas, each of which can be verified by considering a small
syntactic fragment of the program. This directly addresses the
question of scalability, and indirectly the question of abstrac-
tion, since each lemma may be provable using a fairly coarse
abstraction, even if the overall property is not.

The key difficulty in synthesizing compositional proofs
is to discover a suitable collection of lemmas. Automating
this process has proven to be extremely challenging. Some
progress has been made in the finite state case [1,2] and in
some particular domains such as shape analysis [3]. How-
ever, general approaches for inferring compositional proofs
are lacking.

In this paper, we describe an approach to inferring lemmas
based on logical abduction, the process of inferring premises
that imply observed facts. Specifically, our technique uses

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-015-0397-7&domain=pdf

1. Dillig et al.

abduction to synthesize circular compositional proofs. In
such a proof, each lemma is a fact that must hold at all times,
and we must prove that each lemma is not the first to fail.
In effect, the proof of each lemma is allowed to assume the
correctness of all the others, the apparent circularity being
broken by induction over time. Our goal is to introduce lem-
mas that can be discharged in this way, using only small
program fragments.

A key feature of our approach is that it is lazy. That is,
when a lemma £ cannot be discharged, our technique intro-
duces a new lemma that may help to prove L. The key insight
is that, although it is difficult to infer lemmas that might help
abstract interpreters or model checkers prove a property, this
problem is relatively straightforward for verification condi-
tion checkers. Specifically, given an invalid VC ¢ = ¢»,
we employ abductive inference to infer an auxiliary lemma
Y such that ¢ A ¢; = ¢, is valid. The inference of such
useful lemmas is a problem of logical abduction, a problem
that has been studied in various contexts [3,4,20] and for
which we have practical solutions [5]. Experimentally, we
observe that lemmas generated to help verification condition
checking are also useful for other types of verifiers, such as
model checkers and abstract interpreters.

The ability to synthesize compositional proofs by inferring
relevant lemmas has two important benefits. First, it helps us
to address the problems of scale and abstraction. The lemmas
can be verified on small program fragments, and each can be
checked using a different abstraction. Second, lemmas allow
us to combine the strengths of many verifiers, as each lemma
may be verified by a different tool. The tools can be used as
black boxes, without any modification.

This paper applies these ideas for verifying safety prop-
erties of sequential programs. In principle, though, they can
be applied to any class of programs and any proof system
generating verification conditions in a suitable form.
Contributions To summarize, this paper makes the following
contributions:

e We present new proof rules for synthesizing circular com-
positional proofs of program correctness.

e We show how abductive inference can be used to infer
proof subgoals in the form of pre- and post-conditions of
code snippets.

e We use our technique for combining the strengths of
different program analyzers, as each lemma can be dis-
charged by different program analysis tools.

e We experimentally evaluate our approach on a collection
of synthetic and real-world benchmarks and show that
our technique can be used to verify programs that cannot
be verified by existing individual tools.

Outline of the paperWe start by giving an overview of our
approach in Sect. 2 and show how it decomposes the pro-

@ Springer

gram’s proof of correctness. We then give some preliminary
definitions in Sect. 3 and introduce three key proof rules
used in our safety proofs 4. Section 5 describes our proof
search algorithm based on circular compositional reasoning,
and Sect. 6 presents our abduction algorithm. The next two
sections describe our implementation and experiments, with
related work discussed in Sect. 9.

2 Overview

Given an imperative program containing assume and assert
statements, our goal is to construct a safety proof that no
assertion fails in any execution of this program. Our safety
proof makes use of two basic steps: introduction and elimi-
nation of assertions. In an introduction step, we insert a new
assertion at any point in the program. In an elimination step,
we prove that some assertion always holds and then convert
it to an assumption. When verifying an assertion .4, we can
convert all the other assertions to assumptions because our
goal is to prove that A is not the first assertion to fail. More-
over, given these assumptions, we might be able to verify our
assertion locally, using some small fragment of the program
containing the assertion.

As an example, consider the program of Fig. 1. The asser-
tion in square brackets on line 12 represents an invariant of
the loop. It must hold each time the loop is entered and also
when the loop exits. We would like to verify this invariant
assertion using just the second loop in isolation (lines 9—18).
This is not possible, however, because we require the pre-
condition “z is odd” established by lines 1-8. Having failed
in our verification attempt, we will try to infer a lemma that
makes the verification possible. For this, we decorate the pro-
gram with symbols representing unknown assumptions. We
then compute a verification condition (VC), that is, a logical
formula whose validity implies the correctness of the deco-
rated program. Then, using a technique known as abduction,

Fig. 1 Example to illustrate 1. int i=1;
main ideas of our technique 2. int j=0;
3. while(¥)
4.
5. j++s
6. i+=3;
(O
8. int z = i-j;
9. int x=0;
10. int y=0;
11. int w=0;
12. while(*) [assert(x=y)]
13.
14. Z+=xX+y+w;
15. y++;
16. x+=2%2;
7. w=2
18. }

Synthesis of circular compositional program proofs via abduction

we will solve for values of the unknown assumptions making
the VC valid. These assumptions will then become lemmas
to be proved. Going back to our example, we decorate lines
9-18 as follows:

9. int x=0;
10. int y=0;
11. int w=0;
assume ¢
12. while(*) [assert(x=y) assume ¢,]
13. |
14. Z+=X+y+W;
15. y++;
16. X+=z2%2;
17. w+=2;

18.)

The symbols ¢ and ¢, are placeholders for unknown
assumptions. The assumption ¢ is a precondition for the
loop, while ¢» is an additional (assumed) invariant. Our VC
generator tells us that our decorated program is correct when
the following formulas are valid:

z=i—jAx=0Ay=0Aw=0A¢)=>x=Yy
(P2 A x =y) = wp(o,x =y)

Here, o is the loop body (the code in lines 14-17), and
wp(o, ¢) stands for the weakest liberal precondition of for-
mula ¢ with respect to statement . These conditions say that
the invariant x = y must hold on entering the loop, and that
it is preserved by the loop body, given our assumptions.
Now, we can easily see that the first condition is valid even
when ¢ is set to true, but the second one is not valid. Using
the definition of wp, the second condition is equivalent to:

Ax=y)=x+CC+x+y+tw)%h2=y+1

To prove the invariant x = y, we need to find a formula to
plug in for ¢, that makes this formula valid. At the same
time, we do not want our new lemma ¢, to contradict the
original lemma x = y that we are trying to prove. Thus, we
want ¢ A x =y to be satisfiable. This problem of inferring
a hypothesis that implies some desired fact, while remaining
consistent with given facts, is known as abduction. Using
the algorithm described in Sect. 6, we obtain the solution
(w + 7)%2 = 1 for this abduction problem.

Having inferred an auxiliary invariant (w + z)%2 = 1
through abduction, this formula now becomes a lemma in
our proof. We introduce the invariant assertion “assert (w +
7)%2 = 17, so lines 9—-18 now look like this:

9. int x=0;
10. int y=0;
11. int w=0;

12. while(¥) [assert(x=Yy); assert((w+z)%2 =1)]

13. {

14. Z+=X+y+Ww;
15. y++;

16. X+=z2%2;
17. w+=2;

18. }

We can now prove the assertion x = y by assuming our new
lemma (w+2z)%2 = 1. Thatis, x = y is inductive relative to
(w+2)%2 = 1, meaning that we can prove the inductiveness
of x = y assuming our new lemma. We therefore eliminate
this assertion by converting it to an assumption, and obtain
the following code:

9. int x=0;

10. int y=0;

11. int w=0;

12. while(*) [assume(x=y); assert((w+z)%2 = 1)]
13. {

14. Z+=X+y+W;

15. y++;

16. X+=z%2;

17. w+=2;

18.)

Unfortunately, the lemma (w + z)%2 = 1 still cannot
be proved using just these code lines, since it depends on the
initial value of z, which is determined by the first loop. There-
fore, we once again decorate the program with unknown
assumptions ¢ and ¢»:

assume ¢

12. while(*) [assume(x=y); assert(w+z)%2=1);
assume ¢, |

13. {

14. Z+=X+y+W;

15. y++;

16. X+=z%2;

17. w+=2;

18.)

The VCs of the new program are:

z=i—jAx=0Ay=0Aw=0Ap1AXx=Yy)
S W4+20%2=1p AN(w+2)%2=1Ax=y
S wplo,x=y=> wW+2)%2=1)

where again o is the loop body. That is, our lemma must
hold on entry to the loop, and must be preserved by the loop,
given our assumptions. However, neither of these conditions
is valid when ¢1 and ¢, are set to true, so we try to repair the
first condition. To make it valid, we need to find a formula
to plug in for ¢ such that:

@ Springer

1. Dillig et al.

WYAz=i—jAx=0Ay=0Aw=0Ax=1y)
= w+2)%2=1
(W Az=i—jAx=0Ay=0Aw=0Ax=Yy) A false

That is, the assumption ¥ must be sufficient to establish the
invariant on entry to the loop, but not contradict known facts,
including the invariant x = y. Our abduction technique dis-
covers the solution z%2 = 1 for .

This solution z%2 = 1 for ¢ now becomes a lemma,
introduced as an assertion before the loop. We now have:

9. int x=0;
10. int y=0;
11. int w=0;

assert (z%2 =1)
12. while(*) [assume(x=y); assert((w+z)%2 = 1)]
13. |

14. Z+=X+y+WwW;
15. y++;

16. X+=2%2;
17. w+=2;

18. }

At this point we have two assertions in the program. The
VC for the loop invariant is still not valid (that is, the lemma
(w + 2)%2 = 1 is not inductive). However, at this point,
it is possible to prove the invariant using just lines 9-18 in
isolation, since we have the necessary precondition z%?2 = 1.
Converting this assertion to an assumption, we give the above
fragment to a client program analyzer. If this client tool is
able to infer divisibility facts, it can verify the invariant by
inferring the auxiliary invariant w%?2 = 0. We have therefore
localized the verification of the loop invariant.

Having verified the assertion (w+2z)%2 = 1, we eliminate
it by converting it to an assumption and we move on to the
remaining assertion, %2 = 1. This assertion can be verified
using lines 1-8 in isolation. That is, we give these lines to a
client program analyzer thatis able to infer the linear invariant
i =3j + 1 of the first loop. From this, it can prove that z is
odd. All assertions have now been eliminated, so the program
is verified.

Notice that our inference of lemmas using abduction had
two significant advantages in this example. First, it allowed us
to localize the verification, proving one lemma using just the
first loop, another one using just the second. This addresses
the issue of scale. Second, we were able to verify these
lemmas using two different abstractions, in one case using
divisibility predicates, and the other using linear equalities.
In this way, proof decomposition allows different program
verification tools to be combined as black boxes.

As this example also illustrates, our strategy for proving
program safety is similar to an SMT solver. In lazy SMT, a
SAT solver generates proof subgoals in the form of propo-

@ Springer

sitional assignments that must be verified by cooperating
theory solvers. In our method, the core analysis consisting of
VC generation and abduction generates proof subgoals in the
form of program fragments to be verified by the client analy-
ses. In SMT, the subgoals are combined by propositional
resolution, whereas here they are combined by circular com-
positional reasoning. In both cases, the core prover is guided
in its search by facts proved by the clients.

3 Language and preliminaries

In this section, we give a small language on which we for-
malize our technique:

Program Pr :=s

Statement s := skip|v:i=e|s1; 5
| 1f(x) then s else sy
| while(x)[s1] do {s2}
| assert p | assume p

Expressione :=v|cley+ex|e%c|cxe
Predicate p

=e1 Qe (@e{<,>,=})
[ptAp2IpLY p2|l—p

In this language, a program consists of one or more state-
ments. Statements include skip, assignments, sequencing, if
statements, while loops, assertions, and assumptions. While
loops may be decorated with invariants using the [s] nota-
tion. The code s is executed before the loop body and also
before exiting the loop, and may contain only assert and
assume statements. Expressions include variables, constants,
addition, multiplication, and mod expressions. Predicates are
comparisons between expressions as well as conjunction, dis-
junction, and negation. To avoid redundancy, we only allow
non-deterministic conditions (i.e., x) in loops and condition-
als. However, observe that any condition can be expressed
using assume statements in the body of the then and else
branches as well as inside and after the loop body.

We assume a scheme for numbering the statements in a
program, including compound statements. Given a program
7 and a statement number (or position) p occurring in w,
we write 1|, for the statement in 7w numbered p. Moreover,
given a statement o, we write [0, for = with o replacing
the statement numbered p. We also use asrts () to represent
the set of positions of assert statements in 77 and elim (7, P),
where P is a set of assert positions, to represent 7 with all
asserts in positions P converted to assumes. The notation
elim(w, —p) is a shorthand for elim (;r, asrts(mw) \ {p}), that
is, w with all asserts except position p converted to assumes.
We use elim (;r) for w with all asserts converted to assumes.

Synthesis of circular compositional program proofs via abduction

We give our programs a standard weakest-precondition
semantics, defined as follows, by induction on the program
structure:

wp(asserty, @) = ¥ A ¢
wp(assume ¥/,) = = ¢
wp(x :=e, ¢) = ¢(e/x)
wp(s1: 52, @) = wp(s1, Wp(s2, ¢))
wp(@f(*)then s else 52, @) = wp(s1, @) A wp(s2, @)
wp(while(¥)[t1do{s}, §) = Ai=oWp(s'; 1, $)

where s’ stands for a sequential composition s; ...;s of i
occurrences of s.

The meaning of a judgement - 77, where 7 is a program
is that r does not fail internally in any environment, that is,
wp(m, true) = true.

The following lemma says that we can break the correct-
ness of a program fragment 7 in a given context into two
parts: verifying that & does not fail internally, and assuming
it does not, that 7 satisfies its post-condition:

Lemma 1 For all programs w, wp(w, ¢) = wp(m, true) A
wp(elim(r), ¢).

Proof By induction on the structure of programs. The inter-
esting cases are assertions and sequential composition. First,
suppose w = assertiyy. Thus, wp(m,¢d) = ¥ A ¢ and
wp(m, true) = . Moreover, we have elim () = assume,
so wp(elim(m),¢) = v = ¢. Thus, wp(m, true) A
wp(elim(m),¢) = v AW = ¢) = ¥y AN =
wp(m, ¢). Now suppose m = s1; s2. We have wp(m, ¢) =
wp(s1, wp(sz, ¢)). By inductive hypothesis, we then have

wp(7, ¢) = wp(s1, (Wp(s2, true) A wp(elim(sz), $)))
= wp(sy, true) A wp(elim(sy), (Wp(sa, true)
Awp(elim(s2), ¢)))
= wp(sy, true) A wp(elim(sy), wp(sa, true))
Awp(elim(sy), wp(elim(sz), ¢))
= wp(s1, wp(sz, true)) A wp(elim(sy); elim(s2), @)
= wp(s1; $2, true) A wp(elim(sy; s2), @)

Note in the first and second lines above, we use the induc-
tive hypothesis in the forward direction, while in the fourth
we use it in the reverse direction. The remaining cases are
straightforward. O

4 Proof rules

In this section, we introduce the three main proof rules, called
INTRO, ELIM, and LOCALIZE underlying our technique. In the

remainder of the paper, we use a vocabulary Xy of place-
holder symbols to stand for unknown program invariants. A
placeholder ¢ € Xy may occur only in a statement of the
form “assume ¢”. We also use an operator spr that, given
a program 7, returns a formula whose validity implies the
correctness of . That is, = spr() implies = wp(m, true).
The operator spr is, in effect, our VC generator. We assume
that our VC generator spr returns a set of clauses of the form:

XNAN¢p =T

where ¢, € Xy. The constraint x does not contain place-
holders, and the goal I' is some formula asserted in the
program. We also allow placeholder-free clauses of the form
x = I'. Our VC generation scheme (Sect. 5.3) is designed
to produce VCs in these forms.

4.1 Proof rule INTRO

Our first proof rule, called INTRO, allows us to insert a new
assertion in any syntactic position in the program:

INTRO:
- mlassertyr; o], (1)

Frlol,

That is, if we can verify program 7 with any assertion
added in any arbitrary position of 7, this implies that program
7 must be safe.

Theorem 1 Rule INTRO is sound.

Proof We observe that wp(assert ¢; s,) = wp(s, ¥). That
is, prefixing a statement with an assertion only makes the
weakest precondition stronger. Thus, by using monotonicity
of the wp rules, we have:

wp(r[assert ¢; s1,, ¥) = wp([slp, ¥)

4.2 Proof rule ELIM

Our second proof rule, called ELIM, allows us to eliminate
an assertion that has been verified:

ELIM:
Felim(m, —p)
Felim(m, p)
[t/ 4

©))

In particular, this rule says that, if the program is correct
with all assertions except p converted to assumes, then we
can convert p to an assume. Effectively, the ELIM proof rule

@ Springer

1. Dillig et al.

justifies the use of circular compositional reasoning in our
approach. This rule will be useful in constructing our safety
proof because it says that we can assume the correctness of
all other assertions in proving the correctness of assertion p.

Theorem 2 Rule ELIM is sound.

Proof We show by induction on the structure of programs
that:

wp(r, ¢) = wp(elim(z, =p).) A wp(elim(z, p). §)

Again, the interesting cases are assertions and sequential
composition. First, suppose 7 = assert /. Assume first that
the position of 7 is p. Then, elim(w, —p) = assertys and
elim(m, p) = assume Y. This gives us

wp(elim(w, —p), §) A wplelim(r, p), P)
=AY AN(P=Y) =0 AY =wp(T,).

On the other hand, suppose the position of 7 is not p. Then,
elim(w, —p) = assume ¢ and elim(w, p) = asserty, with
the same result as above. Now suppose m = s1; 2. By
Lemma 1, we have

wp(m, @) = wp(si, true) A wp(elim(sy), wp(sz, ¢))

Now by two applications of the inductive hypothesis, distrib-
uting wp into conjunction, we have:

wp(elim(sy, —p), true)
Awp(elim(sy, p), true)
Awp(elim(sy), wp(elim(sz2, =p), $))
Awp(elim(sy), wp(elim(sz, p), $))

wp(, ¢) =

Now since elim(elim(s, p)) = elim(elim(s,—p)) =
elim(s), we have, after reordering the conjunction:

wp(elim(sy, =p), true)
Awp(elim(elim(sy, —p)),
wp(elim(sz, =p), ¢))

Awp(elim(sy, p), true)
Awp(elim(elim(sy, p)),
wp(elim(sz, p), ¢))

wp(T, @) =

So by Lemma 1 (in the reverse direction) we have:

wp(elim(si; s2, —=p), P)

wp(r, ¢) = [Awp(elim(sy; s2, p), @)

The remaining cases are straightforward. O

@ Springer

4.3 Proof rule LOCALIZE

Our third and final proof rule, called Localize allows us to
syntactically localize the verification of an assertion:

LOCALIZE:
Fo
Fmlelim(o)]p G)
Frlo],

According to this rule, if a fragment of the program con-
taining assertion p is correct, then p is correct in the entire
program. This rule allows us to decompose large programs
into smaller syntactic components for verification. The leaf
subgoal - o in this rule will be discharged by an oracle,
which is our set of program verifiers. If the oracle certifies
that o is correct, then we take - o as an axiom.

Theorem 3 Rule LOCALIZE is sound.

Proof By Lemma 1, we have wp(o, ¢) = wp(o, true) A
wp(elim(o), ¢). By the first premise of the rule, we have
wp(o, true) = true. Thus wp(o,) = wp(elim(o), ¢),
which implies wp([o],, true) = wp(rlelim(o)l,, true).

O

S Algorithm for constructing circular
compositional safety proofs

In this section, we describe our algorithm for constructing
circular compositional safety proofs. While our algorithm is
based on the three proof rules from the previous section, we
must make a number of heuristic decisions in searching for
a proof in this system. For example, we must decide in what
order to process subgoals, and, at each subgoal, we must
choose a proof rule to apply. When applying the INTRO rule,
we must choose where and what assertions to introduce. Sim-
ilarly, for ELIM, we must choose the order of elimination of
assertions, and for LOCALIZE, we must decide what program
fragment o to use for the verification of an assertion. More-
over, if a subgoal is unprovable (for example, because we
introduced an assertion that is not correct), then we require
a backtracking strategy.

Our tactic for searching for a proof in this system is illus-
trated in pseudo-code in Fig. 2. To reduce clutter, we don’t
construct the actual proof. Instead we just return true if a
proof of the goal - 7 is found.

Our algorithm starts by choosing an arbitrary assertion p
to eliminate using the ELIM rule (line 3). That is, we first con-
vert all assertions except p to assumes, and then try to prove
p. In particular, we call procedure LOCALIZE (line 4) to pro-
duce a local fragment for verifying p, using the Localize
rule. In our implementation we use the innermost while loop

Synthesis of circular compositional program proofs via abduction

Procedure PROOFSEARCH(7):
input: program m
output: true if proof of 7w succeeds

let P = asrts(m)
if P is empty, return true
choose some p € P, and let 7’ = elim (7, —p)
let ¢ = LOCALIZE(', p)
if the oracle certifies o or = spr(n’) then
return PROOFSEARCH(elim (7, p))
let 7 = INFERBYABDUCTION(7')
for each (p’,¢) in Z do
let 7" = 7lassert ¢; 7|y]y
) if PROOFSEARCH(7"’) then return true
) done
) return false

N = O e O

Fig. 2 Proof search algorithm

o containing p. We then ask an oracle (i.e., a client pro-
gram analysis tool) to prove the assertion. If the oracle can
prove o, we move on to the remaining assertions by process-
ing the second sub-goal of the ELIM rule (line 6). That is, we
now turn assertion p into an assume and recursively invoke
PROOFSEARCH in order to prove the remaining assertions.

On the other hand, if the oracle fails, we use abduction to
generate a sequence of possible lemma introductions in order
tomake p provable (line 7). We try these in turn, meaning that
we apply the INTRO rule (line 9) to generate a new subgoal to
prove and try to verify the program containing this additional
lemma (lemma 10). If this proof fails, we move on to the
next lemma in the sequence, and so on, until the sequence is
exhausted, at which point, we return failure.

The remainder of this section explains the various auxil-
iary procedures used in our PROOFSEARCH algorithm in more
detail.

5.1 Using Abduction to Infer New Assertions

The key step in our proof search algorithm is the INFER-
BYABDUCTION procedure, shown in Fig. 3. This procedure
takes a program 7 and suggests new assertions that may be

Procedure INFERBYABDUCTION(7):
input: program m
output: lazy list of pairs (p, ¢p)

let 7’ = DECORATE(T)
let VC = spr(n’)
if there exists an invalid clause x = I" in VC then return
for each invalid clause x A ¢, = I" in VC do

for each ¢ in ABDUC(x,I") do

yield (p,¢)

done

done

Fig. 3 Inferring assertions by abduction

introduced to help make 7 provable. The first step in this
process is to decorate the program with some assumptions
of the form “assume ¢,”, where ¢, is a placeholder symbol
corresponding to statement position p. These placeholders
stand for possible assertions we could introduce in a com-
positional proof. We discuss the choice of the placeholder
locations in Sect. 5.2.

Having decorated the program with the appropriate
assumptions, the next step is to generate the VC for the deco-
rated program using the spr operator (described in Sect. 5.3).
This is a set of clauses of the form x = I"or x A¢, = I'. To
prove the assertion, we need to choose values of the place-
holders to make all of these implications valid. If there is an
invalid clause of the form x = I'" we cannot succeed, so
we return the empty sequence. Otherwise, we consider each
invalid clause of the form x A ¢, = I'. We want to choose
a formula to assign to ¢, in order to make the implication
X A ¢p = T valid. In addition, we do not want the impli-
cation to be vacuously true, thus, we require that x A ¢, be
consistent.

This leaves us with the following abduction problem. We
must find a formula ¥ over the program variables, such that
the following two conditions hold:

ExAYv =T and K x AY¥ = false

In Sect. 6, we describe a method of solving this problem.
For now, we assume a procedure ABDUC that, given x and
", returns a lazy list of solutions for 1. INFERBYABDUC-
TION then returns the list of solutions 1, ¥, ..., ¥, for
each placeholder ¢, paired with the corresponding program
position p of ¢.

5.2 Program decoration

An important consideration in choosing the placement of
placeholder assumptions is that each clause in the VC should
contain a placeholder to allow us to make progress when the
VC is not valid (except, of course, for the whole program’s
precondition, which must be valid). In general, this place-
ment strategy depends on the VC generation scheme. In our
particular language and VC scheme, it suffices to put a place-
holder at the head of each loop. To support localization (as
seen in the example of Fig. 1) we also add a placeholder
before each loop. That is, the procedure DECORATE replaces
each statement of the form while(x)[o {7} in a program with:

assume Qpre;
while(x) [o; assume ¢iny] { T }

As a heuristic matter, we consider introducing a precondition
for a loop before introducing an invariant.

@ Springer

1. Dillig et al.

5.3 VC generation

The general approach we have described can use any VC
generator function spr, provided the VCs can be rewritten
into the required form. Here, we present a simple VC genera-
tion approach for programs without procedures that explicitly
generates VCs in the form x A ¢, = [I'. The approach
is based on propagating both strongest postconditions for-
wards and weakest preconditions backwards. However, we
could also use a more standard approach based on just weak-
est preconditions with some rewriting of the result into the
right form.

In our VC generation scheme, we generate a clause for
each placeholder ¢,. Given the strongest postcondition of
the code preceding p, this clause states that ¢, guarantees
the weakest precondition of the code succeeding p. Since we
can’t compute preconditions and postconditions precisely for
loops, we abstract these conditions, using the stated invariants
of the loop. The result is a VC that is a sufficient but not
necessary condition for the correctness of the program.

We describe our VC generation procedure as a set of infer-
ence rules (Fig. 4) that produce judgements of the form
P,O F s V', P/, Q'. The meaning of this judge-
ment is that, if the environment of statement s guarantees
precondition P and postcondition Q, then s will guaran-
tee postcondition P’ and precondition Q’, given that VC’'
is valid. That is, the judgement is valid when = VC’ implies
= P = wp(s, P))and = Q' = wp(s, Q).

For primitive statements s, we have VC' = true,
P’ = sp(s, P) and Q' = wp(s, Q). Thus, our rules
propagate strongest post-conditions forward and weakest
pre-conditions backward. However, rule 4.2 is a special rule
for placeholder assumptions. It produces a VC clause rather
than propagating sp and wp.

For while loops (rule 6), we weaken the post-condition
and strengthen the precondition by allowing entry to the
loop in any state satisfying the stated loop invariants. The
first premise guarantees that the loop invariant holds on
entry, the second that the loop invariant is preserved by one
iteration of the loop, and the third that exiting the loop sat-
isfies its postcondition. One way to think of this is that,
to verify a loop under pre- and post-conditions P and Q,
we need to establish three Hoare triples: {P} I {true} and
{true}elim(1); s; I {true} and {true} elim(I) {Q}. For exam-
ple, in a typical case, we want to prove an invariant assertion
Y in a loop. The decorated loop looks like this:

while(x) [assert ¥; assume ¢iny] {s}
According to the first premise of rule (6), the precondition
Q' of the loop is the precondition of “assert v/ ; assume ¢iny”,
which is ¥. The postcondition P’ of the loop (third premise)
is the postcondition of “assume ; assume ¢in,”, Which is

@ Springer

1)
(’P,Q F skip : true, P, Q

Q' =30 (Pl /v] Av = (e[v' /v]))
P,QFv:=ce:true, Q',Qle/v]

3) Q =PANC P =QAC
}P,Q - assert C : true,Q’, P’

(2)

Q' =PANC P =(C=Q)
(4.1) C not placeholder
' }P,Q - assume C': true, Q’, P’

g VO =(PAOM = Q)
“/P,Q + assume ¢p(v) : VC', true, true

P,P'Fs1:VCy,Q', P"
Q,QF s2:VCy, Q", P

5)
("P,QF s1;82 : VC1 AVCa,Q", P"

P, truet1:VCy,_, Q'
true, true - elim(I);s;1 @ VCa,_, Q2
true, Q + elim(I) : VCs, P/, Qs
VC’' =VC; AVCa A Q2 AVC3 A Q3

(6)P, Q + while(x)[I] do {s}: VC', P",Q’

P,QFs1:VC,Q1,P1 P,QF s2:VC2,Q2, P
Q' =Q1VQ2 P =P AP

7
(7) P,Q + if(x) then s; else s : VC1 AVCa,Q’, P’

Fig. 4 Rules describing computation of VCs

true, since @iy is a placeholder. Finally, the second premise
yields the VC from:

assume ; assume ¢ipy; §; assert ¥; assume ¢iny;

This yields two clauses, one for each placeholder instance,
according to rule 4.2. The first is ¥ A ¢iny = wWp(s, ¥). The
second is true. To make the VC valid, we need to find an
assumption @iy, under which ¥ is inductive. Furthermore,
since we add an “assume ¢y~ statement before the loop,
Rule (4.2) results in the generation of the VC clause P A
¢pre = ¥ where P is the precondition of ¢pe. Thus, to make
this VC valid, we must find an appropriate solution for ¢pre
that implies ¥ holds initially. Finally, the third premise of
Rule (6) results in the generation of the VC ¢ A ¢iny = O,
meaning that we must find a strengthening ¢i,y of v that
implies loop postcondition Q.

For program , our goal is to derive a judgement of the
form true, true = 7 : VC',_, Q'. This judgement says
that if VC’ is valid, then a sufficient condition for correct-
ness of our program in any initial state is Q. Thus, we have
spr() = VC' A Q'. Using our particular decoration scheme,
we are guaranteed that each clause in VC’ has exactly one
occurrence of a placeholder (rule 4.2), or is free of place-
holders (other rules).

Finally, we note that propagating postconditions forward
has an additional advantage for compositional verification.
That is, when we pass a localized program loop to the oracle

Synthesis of circular compositional program proofs via abduction

for verification, we can include the precondition for that loop
computed by our VC generator as an additional constraint on
the initial state. This can allow us to verify assertions with
smaller localizations.

6 Performing abductive inference

We now describe our technique for performing abductive
inference, which corresponds to the ABDUC function used in
the INFERBYABDUCTION algorithm. Recall that, given for-
mulas x and I', abduction infers a formula i such that:
M x Ay =T (2)SAT(x AY)

Observe that one obvious solution to this problem is
Y = T. In the context of our algorithm, since ¥ corresponds
to a candidate fact we tried to prove but could not, this trivial
solution corresponds to querying the same subgoal we tried
before! Thus, to avoid obtaining this trivial and useless solu-
tion, our goal is to utilize what we already know (i.e., x) to
find a new subgoal ¥ that, together with yx, is sufficient to
establish I.

Hence, in our setting, we believe a useful abductive solu-
tion should have two characteristics:

1. First, should contain as few variables as possi-
ble because invariants typically describe relationships
between a few key variables in the program. For example,
if both x = y and x + 10z + 5w — 4k < 10 are suffi-
cient to explain I, it is preferable to start with the simpler
candidate x = y.

2. Second, ¢ should be as general (i.e., as logically weak)
as possible. For example, if x = 0Ay =0andx =y
are both solutions to the inference problem, we prefer
x = y because solutions that are too specific (i.e., log-
ically strong) are unlikely to hold for all executions of
the program. Furthermore, since x = 0 A y = 0 implies
x = y,clientanalyses that can prove the stronger invariant
should also be able to prove the weaker invariant x = y.

The second criterion of generality above has an obvious
technical characterization. In particular, if ¢ and ¥’ are both
abductive solutions and ' = 1, this means ¥’ is less
general than . Therefore, the most general explanation cor-
responds to the logically weakest solution. While there is no
obvious technical definition of the first criterion of simplic-
ity, we will characterize simplicity of an explanation y» by
the number of variables in 1y. We believe this characteriza-
tion is sensible because most invariants involve relationships
between a few key variables rather than every variable in
the program. Thus, in our setting, the notion of generality
is captured through logical implication, whereas simplicity

is approximated by the number of variables involved in the
invariant. We will first describe how to generate abductive
explanations with as few variables as possible; then, we will
consider the problem of finding the weakest solution involv-
ing a certain set of variables.

To find solutions containing as few variables as possible,
observe that y Ay = I can be rewrittenas ¢ = (—x vI).
Now, consider a satisfying assignment o of —x Vv I' con-
sistent with x. By definition of a satisfying assignment,
0 = (—x Vv I). Thus, any satisfying assignment of —x v I
consistent with x is a solution for the abductive inference
problem. However, since we are interested in solutions with
as few variables as possible, we are not interested in full
satisfying assignments of —y Vv I', but rather partial satisfy-
ing assignments. Intuitively, a partial satisfying assignment
o of ¢ assigns values to a subset of the free variables in g,
but is still sufficient to make ¢ true, i.e., 0 (¢) = true. There-
fore, to find an abductive solution containing as few variables
as possible, we will compute a minimum partial satisfying
assignment (MSA) of =y v I [5]. An MSA of formula ¢
is simply a partial satisfying assignment of ¢ containing no
more variables than other partial satisfying assignments of ¢.
Minimum satisfying assignments for many theories, includ-
ing Presburger arithmetic used in this paper, can be computed
using the algorithm described in [5].

Now, if an MSA of —x Vv I" contains a set of variables V,
we know there exists an abductive solution containing only
V. However, we want to find a logically weakest formula over
V that still implies —x Vv I'. It can be shown that a weakest
formula over V thatimplies —x VI is given by YV. (= VI)
where V = Vars(—y Vv I') — V. Furthermore, since we typ-
ically prefer quantifier-free solutions, quantifier elimination
can be used to eliminate V in theories that admit quantifier
elimination (such as Presburger arithmetic used here).

After computing a most general abductive solution ¥ with
the fewest number of variables as described above, we per-
form one more step to further simplify . In particular, we
do not want v to repeat facts that we already know. For
example, suppose one of the invariants we already know is
z > 10, and the abductive solution ¥ is x = y A z > 0. In
this case, the subpart of the formula z > 0 is redundant since
it is already implied by the known invariant z > 10. There-
fore, to ensure that the subgoals we create do not repeat facts
we have already shown, we simplify the abductive solution v
with respect to I". In particular, subparts of ¢ that are implied
by I' are replaced with true, while subformulas of i that con-
tradict I' are replaced with false. A more technical discussion
of how this simplification is performed is given in [21].

Example 1 Consider the problem from Sect. 2 of finding a
¥ such that:

MDY APAx=y=>wp(S,x=1Y)

@ Springer

1. Dillig et al.

(2) SAT(y AP Ax =y) where
P =@Z=i—jAx=0Ay=0Aw=0)
wpS,x=y) =&+ @E+x+y+w%h2=y+1)

To solve this problem, we first compute an MSA of x #
y VvV =P Vvuwp(S, x =y) consistent with P A x = y. Using
the algorithm of [5], an MSA is z = 1, w = 0. Since vari-
ables x, y, i, j are not in the MSA, we generate the formula
Vx,y,i,j.x =y Vwp(S,x = y). Using quantifier elimi-
nation, this formula is equivalent to (z + w)%?2 = 1, which
is the abductive solution we used in Sect. 2.

6.1 Computing all abductive solutions

In the previous discussion, we described how to compute
one solution to the abductive inference problem defined by
x and I'. However, the INFERBYABDUCTION algorithm from
Sect. 5 requires a lazy list of solutions. That is, given a set of
previous solutions ¥1, ¥, . . ., ¥y for the abduction problem
defined by x and I', how do we compute a new solution ¥
distinct from ¥r{, Yo, ..., Y ?

To find such a solution ¢y, we compute an MSA of
—x Vv I', that is not only consistent with y but also with
the negations =1, =y, ..., =Yy of each of the previous
solutions. Given such an MSA containing variables V, the
formula VV. (—x Vv I') yields a new solution distinct from
previous solutions. The process terminates when there is no
longer a consistent solution.

7 Implementation and extensions

We have implemented the techniques described in this paper
using the SAIL front-end [6] for analyzing C programs. Our
implementation also relies on the Mistral constraint solver
[5,7] for solving and simplifying constraints generated by the
analysis and for computing minimum satisfying assignments
and performing quantifier elimination which are necessary
for performing abductive inference as described in Sect. 6.

To simplify the key technical ideas, the PROOFSEARCH
procedure described in Sect. 5 reanalyzes the program
from scratch on each recursive invocation. In our imple-
mentation, we only incrementally recompute those pre and
post-conditions that may have changed.

While we formalize our technique on a small language
without pointers, our implementation handles most features
of the C language, including pointers, arrays, and function
calls. To allow our technique to work on pointer-manipulating
programs, we also integrate a flow-sensitive pointer analy-
sis. In particular, for computing strongest postconditions and
weakest preconditions in the presence of pointers, we uti-
lize an environment I" that maps each pointer variable to a
set of locations it may point to. For example, suppose that

@ Springer

we want to compute the weakest precondition of frue with
respect to the statement assert (*p == 3), and suppose
that I'(p) = {a, b}. In this case, the weakest precondition is
computed as:

(p=& —»>a=3)AN(p=&b —> b=23)

This precondition states that if p points to a, then a must
have the value 3 before this statement; similarly, if p points
to b, then b must have the value 3 before the statement.
Effectively, our computation utilizes points-to information
to capture pre- and postconditions of statements parametric
over the available points-to facts.

For interprocedural analysis, our implementation is cont-
ext-sensitive. Specifically, for computing strongest postcon-
ditions, a bottom-up analysis computes strongest postcon-
ditions of callees parametric over function inputs, which
are then instantiated at calling contexts. While a bottom-
up analysis may at first seem counterintuitive for a forwards
analysis, this is necessary if we want to reuse the callee’s post-
condition summary in every calling context. As an example,
consider the following function foo and its caller bar:

int x, vy;
void bar ()
void foo ()

foo(); 1}
xX=x+2; }

{ x=0; y=0;
{ x=x+1; y=Xx;

Here, the summary of fooiscomputedasx = xo+3 Ay =
X0+ 1 where xo denotes the value of x at any call site of foo.
Atacall site of foo, let ¢ be the strongest postcondition right
before the function call, and let ¢ be the callee’s summary.
Then, the strongest postcondition of ¢ with respect to the
function call is obtained as Jxg, yg. (P¢[xo/x, Yo/y] A @).
In this example, this yields the strongest postcondition x =
3Any=1.

The technique described in this paper extracts code
snippets annotated with assertions and assumptions and
presents these extracted fragments as queries to client analy-
ses. Our prototype implementation for this purpose is only
semi-automatic: While our implementation outputs the code
snippet to be analyzed by client analyses and what assertions
and assumptions to add at which program points, it currently
does not invoke client analyses automatically. Instead, we
invoke external analyses manually and input the results to
these queries back into our analysis. While this step is, in
principle, easy to automate, it requires significant engineer-
ing effort in practice because existing tools take the program
in different formats and have different ways of annotating
assumptions.

The technique described in this paper can utilize dynamic
information by ruling out some solutions to abductive infer-
ence problems. In our prototype implementation, we man-
ually record some values that arise in concrete executions
and require the abductive solution to be consistent with these
observed values.

Synthesis of circular compositional program proofs via abduction

Table 1 Experimental results

on micro benchmarks Name LOC Time(s) # query Poly. Cong Blast Compass RP-provable?
Bl 45 0.6 2 X X v X X
B2 37 0.2 2 X v X X X
B3 51 1.0 2 v X v X v
B4 59 0.4 3 v X v X X
B5 89 0.6 3 v X v X X
B6 60 0.5 5 X v X v X
B7 56 0.6 2 X X v v X
B8 45 0.2 2 v X v X v
B9 59 0.5 1 X X v X X
B10 47 0.2 2 v X v v X

“Poly.” denotes the polyhedra abstract domain, and “Cong.” abbreviates the linear congruences abstract
domain. The column labeled “RP-provable?” shows whether the benchmark is provable using the reduced
product of the polyhedra and linear congruences abstract domains

8 Experimental evaluation

To evaluate our technique, we performed two experiments,
one involving challenging synthetic benchmarks, and a sec-
ond using open-source C programs. In both experiments,
our oracle consists of four client tools: BLAST [8], the
polyhedra abstract domain [9] implemented in the Inter-
proc tool [10], the linear congruences domain [11] also
implemented in Interproc, and Compass [12,13]. Among
these analyses, polyhedra analysis infers linear inequali-
ties between integer variables, while the linear congruences
abstract domain infers divisibility predicates. Unlike the
analyses implemented in Interproc, BLAST is not based
on abstract interpretation and uses counterexample-guided
abstraction refinement. Compass focuses on heap and array
reasoning and can also infer linear equalities, including dis-
junctive ones.

While BLAST and Compass can both analyze programs
written in C, Interproc analyzes pointer-free programs writ-
ten in the “Simple” language. Thus, when using Interproc
to prove subgoals, we needed to rewrite the extracted frag-
ment to comply with the syntactic restrictions of the Simple
language.

The results of the first experiment are summarized in
Table 1. This experiment involves 10 synthetic benchmarks
available from http://www.cs.utexas.edu/~tdillig/tacas-
benchmarks.tar.gz. None of these benchmarks can be verified
using one of the four client tools alone. Furthermore, even if
we conjoin the invariants inferred by each tool, the combined
invariants are still not sufficient to prove the assertion. Thus,
verifying the assertions in these examples requires a deep,
and often cyclic, interaction between different tools. Using
the technique proposed in this paper, all ten benchmarks can
be verified using BLAST, polyhedra, linear congruences, and
Compass as clients.

In Table 1, the column labeled LOC shows the number
of lines of code in each benchmark, and the column labeled
“Time” shows analysis time in seconds. Although the time
reported here includes the time needed to compute pre- and
post-conditions, performing abduction, and generating proof
subgoals, it does not include the time that client analyses take
to answer queries. The reason for this is that BLAST does
not terminate on some of the queries we make; thus we fixed
a time-out limit of 5 sec per query for client analyses. All
queries made to clients with the exception of those on which
BLAST does not terminate took less than half a second.

The next column labeled “# query” shows the number of
queries our technique poses to clients. The next four columns
show which of the analyses were able to successfully answer
at least one query on a given benchmark. Finally, the last
column shows whether the original benchmark can be veri-
fied using the reduced product [14] of the convex polyhedra
and linear congruences abstract domains, as implemented
in Interproc. For example, for Benchmark 1, the polyhedra
abstract domain and the BLAST model checker could suc-
cessfully verify at least one of the queries, while Compass
and linear congruences abstract domain could not answer
any.

The main point of the first experiment is that all bench-
marks from Table 1 can be verified using the proposed
technique, although no client tool can individually verify
any benchmark. Furthermore, the number of queries to client
tools is small, ranging from 1-5 queries. This indicates that
our technique is able to home in on relevant lemmas neces-
sary to localize the overall proof. Table 1 also shows that it is
often helpful to combine different approaches in the verifi-
cation task. For example, BLAST and polyhedra were useful
for verifying benchmark 3, whereas linear congruences and
Compass were used to verify benchmark 6. On average, each
query could be answered by 1.7 tools.

@ Springer

http://www.cs.utexas.edu/~tdillig/tacas-benchmarks.tar.gz
http://www.cs.utexas.edu/~tdillig/tacas-benchmarks.tar.gz

1. Dillig et al.

Table 2 Experimental results

Name LOC Time(s) # Query Avg # vars AvgLOC
on open-source software

per query per query
Wizardpen driver 1242 3.8 5 1.5 29
OpenSSH clientloop 1987 2.8 3 2.3
Coreutils su 1057 3.0 5 1.7
GSL histogram 526 0.6 4 3.6 15
GSL matrix 7233 16.9 8 1.8 7

In a second experiment, summarized in Table 2, we used
the proposed technique for verifying assertions in real C pro-
grams. The programs we analyzed include a Linux device
driver, an OpenSSH component, a coreutil application, and
two modules from the GNU scientific library (GSL). These
benchmarks range from 526 to 7233 lines of code. As in the
previous experiment, none of these benchmarks can be ver-
ified by individual client tools alone (i.e., they either do not
terminate or report a false alarm). However, when the four
client tools are combined using our technique, all bench-
marks can be successfully verified.

Table 2 also shows that, although the original programs
are quite large, the extracted program fragments provided to
client tools are small, ranging in size from an average of 5
to 29 lines. This corroborates the claim that our technique
often extracts subgoals on program fragments that are much
smaller than the original program. Although analyses like
the polyhedra domain do not typically work on programs of
this size, our technique can utilize such expressive analyses
in the verification task by extracting small proof subgoals.

Another interesting aspect of our approach is that the
compositional proofs synthesized by our technique are fairly
intuitive and could potentially be useful as annotations at
the source code level. In particular, since our abduction pro-
cedure always starts with a simplest solution, the lemmas
presented to the client analyses are generally compact and
easily understandable by humans. Hence, the proof strategies
synthesized by our approach appear to be similar to manual
program proofs.

9 Related work

Compositional verification The technique presented here
is similar to other techniques for compositional verifica-
tion such as [1,2,15]. Specifically, [1,2] use Angluin’s L*
automata learning algorithm for learning assumptions in
concurrent finite-state systems. In this work, we address syn-
thesizing compositional proofs for sequential infinite-state
systems, and our approach to generating missing assump-
tions is based on logical abduction rather than Angluin’s
learning algorithm. Similar to our proposed technique, the
approach described in [15] also employs a circular composi-

@ Springer

tional approach and uses different abstractions to discharge
proof subgoals. However, in contrast to [15], our proof sub-
goals are generated automatically by abduction. Generally
speaking, our purpose here is different from previous work
on compositional verification in that we try to combine the
strengths of different verifiers in one unified framework.

Combining program analyzers Most previous work on
combining verification tools focuses on abstract interpre-
tation. Specifically, the reduced cardinal product [14] and
logical product [16] constructions allow combining different
abstract domains. Our work differs from these approaches
in several respects: First, we do not require client tools to
be based on abstract interpretation and treat each client tool
as a black box. Second, our technique is compositional and
does not require client tools to verify the entire program, but
instead proof subgoals represented as small code snippets.
This aspect of our technique allows utilizing very expen-
sive analyses even when verifying large programs. Third,
unlike the reduced product construction, our technique is
automatic and does not need to be reimplemented for com-
bining different analyses. Furthermore, as demonstrated in
our experimental results, only 2 of the 10 synthetic bench-
marks can be verified by the reduced product of polyhedra
and linear congruences.

The HECTOR tool described in [17] also allows informa-
tion exchange between different analysis tools. However,
HECTOR does not generate proof subgoals, and information
exchange is through first-order logic rather than source code.

Use of abduction in verification Several other approaches
have used abductive inference in the context of program veri-
fication and software engineering [3,18,19,22]. The work of
Gulwani et al. uses abductive inference to compute under-
approximating logical operators for building universally
quantified abstract domains [18]. Among these approaches,
[3,19] also use abduction to generate missing precondi-
tions. Specifically, [3] uses abduction for generating missing
assumptions in an interprocedural shape analysis algorithm,
whereas [19] uses abduction in the context of logic pro-
gramming. Our work differs from [3,19] in that we address
combining different verification tools in a compositional way
and use a different algorithm for computing abductive solu-
tions. Our own recent work also uses abductive inference
to semi-automate the task of classifying error reports as

Synthesis of circular compositional program proofs via abduction

false alarms or real bugs [20]. Similar to [20], we use mini-
mum satisfying assignments [5] to solve abductive inference
problems. However, the present work addresses the very dif-
ferent problem of combining different verification tools in
one framework.

10 Conclusion and future work

We have proposed an algorithm for automatically synthe-
sizing circular compositional proofs of program correctness.
Our technique employs logical abduction to infer auxiliary
lemmas that are useful in a compositional proof. The infer-
ence of helper lemmas allows combining the strengths of
different program verifiers in one framework, as different
verifiers can be used to discharge different lemmas. Our
technique also helps address scalability concerns since each
lemma requires proving the correctness of a small fragment
of the original program. We have implemented the proposed
technique, and our experiments show that it can verify pro-
grams that cannot be proven by individual tools.

In future work, we believe the techniques described in this
paper can be extended in several ways: First, our PROOF-
SEARCH algorithm employs a simple depth-first search for
synthesizing compositional proofs. While our algorithm fixes
a depth limit on the search to guarantee termination, other
search strategies, such as iterative deepening, might be more
effective and improve the scalability of the overall approach.
Another interesting avenue is to use dynamic information
(or static underapproximations) to reject candidate invariants
speculated using abduction. Finally, we plan to explore more
efficient algorithms for performing abductive inference and
extending it to richer first-order theories that do not admit
quantifer elimination.

Acknowledgments We would like to thank Hongseok Yang, Aaron
Bradley, Peter O’Hearn, Noam Rinetzky, and the anonymous reviewers
of TACAS’13 and STTT" 15 for their helpful feedback.

References

1. Cobleigh, J., Giannakopoulou, D., Pasdreanu, C.: Learning
assumptions for compositional verification. TACAS, pp. 331-346
(2003)

2. Gupta, A., Mcmillan, K.L., Fu, Z.: Automated assumption gen-
eration for compositional verification. Form. Methods Syst Des
(2008)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional

shape analysis by means of bi-abduction. POPL 44(1), 289-300
(2009)

. Peirce, C.: Collected papers of Charles sanders peirce. Belknap

Press, Cambridge (1932)

. Dillig, I., Dillig, T., McMillan, K., Aiken, A.: Minimum satisfying

assignments for SMT, CAV (2012)

. Dillig, I, Dillig, T., Aiken, A.: SAIL: Static analysis intermediate

language. Stanford University Technical Report

. Dillig, L., Dillig, T., Aiken, A.: Cuts from proofs: a complete and

practical technique for solving linear inequalities over integers. In:
CAV. (2009)

. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Software verifica-

tion with BLAST. In: International conference on Model checking
software, pp. 235-239 (2003)

. Cousot, P, Halbwachs, N.: Automatic discovery of linear restraints

among variables of a program. In: POPL, ACM, pp. 84-96 (1978)
Jeannet, B.: Interproc analyzer for recursive programs with numeri-
cal variables. http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
Granger, P.: Static analysis of linear congruence equalities among
variables of a program. In: TAPSOFT’91, Springer, pp. 169—192
(1991)

Dillig, I., Dillig, T., Aiken, A.: Fluid updates: beyond strong vs.
ESOP, weak updates. In (2010)

Dillig, L., Dillig, T., Aiken, A.: Precise reasoning for programs
using containers. POPL (2011)

Cousot, P, Cousot, R.: Systematic design of program analysis
frameworks. In: POPL, ACM, pp. 269-282 (1979)

McMillan, K.: Verification of infinite state systems by composi-
tional model checking. Correct Hardware Design and Verification
Methods, pp. 705-705 (1999)

Gulwani, S., Tiwari, A.: Combining abstract interpreters. In: ACM
SIGPLAN Notices, ACM, vol. 41, pp 376-386 (2006)

Charlton, N., Huth, M.: Hector: Software model checking with
cooperating analysis plugins. In: Computer Aided Verification,
Springer, pp. 168-172 (2007)

Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract inter-
preters to quantified logical domains. In: POPL, ACM, pp. 235-246
(2008)

Giacobazzi, R.: Abductive analysis of modular logic programs.
In: Proceedings of the 1994 International Symposium on Logic
programming, Citeseer, pp. 377-391 (1994)

Dillig, L., Dillig, T., Aiken, A.: Automated error diagnosis using
abductive inference. In: PLDI (2012)

Dillig, I, Dillig, T., Aiken, A.: Small formulas for large programs:
on-line constraint simplification for scalable static analysis. In: Sta-
tic Analysis Symposium (2010)

Alrajeh, D., Ray, O., Russo, A., Uchitel, S.: Using abduction and
induction for operational requirements elaboration. In: Journal of
Applied Logic (2009)

@ Springer

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

	Synthesis of circular compositional program proofs via abduction
	Abstract
	1 Introduction
	2 Overview
	3 Language and preliminaries
	4 Proof rules
	4.1 Proof rule Intro
	4.2 Proof rule Elim
	4.3 Proof rule Localize

	5 Algorithm for constructing circular compositional safety proofs
	5.1 Using Abduction to Infer New Assertions
	5.2 Program decoration
	5.3 VC generation

	6 Performing abductive inference
	6.1 Computing all abductive solutions

	7 Implementation and extensions
	8 Experimental evaluation
	9 Related work
	10 Conclusion and future work
	Acknowledgments
	References

